About the Project

Poisson summation formula

AdvancedHelp

(0.001 seconds)

6 matching pages

1: 1.8 Fourier Series
§1.8(iv) Poisson’s Summation Formula
1.8.16 n = e ( n + x ) 2 ω = π ω ( 1 + 2 n = 1 e n 2 π 2 / ω cos ( 2 n π x ) ) , ω > 0 .
2: 1.14 Integral Transforms
Poisson’s Summation Formula
3: 3.5 Quadrature
See also Poisson’s summation formula1.8(iv)). …
4: Bibliography B
  • B. C. Berndt (1975a) Character analogues of the Poisson and Euler-MacLaurin summation formulas with applications. J. Number Theory 7 (4), pp. 413–445.
  • 5: Errata
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • 6: Bibliography K
  • G. A. Kalugin, D. J. Jeffrey, and R. M. Corless (2012) Bernstein, Pick, Poisson and related integral expressions for Lambert W . Integral Transforms Spec. Funct. 23 (11), pp. 817–829.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • S. H. Khamis (1965) Tables of the Incomplete Gamma Function Ratio: The Chi-square Integral, the Poisson Distribution. Justus von Liebig Verlag, Darmstadt (German, English).
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.