About the Project

Pad%C3%A9%20approximations

AdvancedHelp

(0.002 seconds)

21—30 of 239 matching pages

21: Bibliography N
β–Ί
  • D. Naylor (1989) On an integral transform involving a class of Mathieu functions. SIAM J. Math. Anal. 20 (6), pp. 1500–1513.
  • β–Ί
  • W. J. Nellis and B. C. Carlson (1966) Reduction and evaluation of elliptic integrals. Math. Comp. 20 (94), pp. 223–231.
  • β–Ί
  • G. Németh (1992) Mathematical Approximation of Special Functions. Nova Science Publishers Inc., Commack, NY.
  • β–Ί
  • J. N. Newman (1984) Approximations for the Bessel and Struve functions. Math. Comp. 43 (168), pp. 551–556.
  • β–Ί
  • E. W. Ng and M. Geller (1969) A table of integrals of the error functions. J. Res. Nat. Bur. Standards Sect B. 73B, pp. 1–20.
  • 22: 18.40 Methods of Computation
    β–ΊThese quadrature weights and abscissas will then allow construction of a convergent sequence of approximations to w ⁑ ( x ) , as will be considered in the following paragraphs. … β–Ί
    Stieltjes Inversion via (approximate) Analytic Continuation
    β–ΊResults of low ( 2 to 3 decimal digits) precision for w ⁑ ( x ) are easily obtained for N 10 to 20 . … β–ΊEquation (18.40.7) provides step-histogram approximations to a x d ΞΌ ⁒ ( x ) , as shown in Figure 18.40.1 for N = 12 and 120 , shown here for the repulsive Coulomb–Pollaczek OP’s of Figure 18.39.2, with the parameters as listed therein. … β–ΊIn Figure 18.40.2 the approximations were carried out with a precision of 50 decimal digits.
    23: 3.4 Differentiation
    β–ΊFor formulas for derivatives with equally-spaced real nodes and based on Sinc approximations3.3(vi)), see Stenger (1993, §3.5). … β–ΊThe integral on the right-hand side can be approximated by the composite trapezoidal rule (3.5.2). … β–ΊWith the choice r = k (which is crucial when k is large because of numerical cancellation) the integrand equals e k at the dominant points ΞΈ = 0 , 2 ⁒ Ο€ , and in combination with the factor k k in front of the integral sign this gives a rough approximation to 1 / k ! . … β–Ί
    Laplacian
    β–Ί
    Biharmonic Operator
    24: 2.11 Remainder Terms; Stokes Phenomenon
    β–Ί
    §2.11(i) Numerical Use of Asymptotic Expansions
    β–Ίβ–Ί
    §2.11(iii) Exponentially-Improved Expansions
    β–Ί
    §2.11(vi) Direct Numerical Transformations
    β–ΊFor example, using double precision d 20 is found to agree with (2.11.31) to 13D. …
    25: Bibliography R
    β–Ί
  • A. Ralston (1965) Rational Chebyshev approximation by Remes’ algorithms. Numer. Math. 7 (4), pp. 322–330.
  • β–Ί
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • β–Ί
  • M. Razaz and J. L. Schonfelder (1981) Remark on Algorithm 498: Airy functions using Chebyshev series approximations. ACM Trans. Math. Software 7 (3), pp. 404–405.
  • β–Ί
  • W. H. Reid (1972) Composite approximations to the solutions of the Orr-Sommerfeld equation. Studies in Appl. Math. 51, pp. 341–368.
  • β–Ί
  • W. H. Reid (1974a) Uniform asymptotic approximations to the solutions of the Orr-Sommerfeld equation. I. Plane Couette flow. Studies in Appl. Math. 53, pp. 91–110.
  • 26: 28.35 Tables
    β–Ί
  • Blanch and Clemm (1965) includes values of Mc n ( 2 ) ⁑ ( x , q ) , Mc n ( 2 ) ⁑ ( x , q ) for n = 0 ⁒ ( 1 ) ⁒ 7 , x = 0 ⁒ ( .02 ) ⁒ 1 ; n = 8 ⁒ ( 1 ) ⁒ 15 , x = 0 ⁒ ( .01 ) ⁒ 1 . Also Ms n ( 2 ) ⁑ ( x , q ) , Ms n ( 2 ) ⁑ ( x , q ) for n = 1 ⁒ ( 1 ) ⁒ 7 , x = 0 ⁒ ( .02 ) ⁒ 1 ; n = 8 ⁒ ( 1 ) ⁒ 15 , x = 0 ⁒ ( .01 ) ⁒ 1 . In all cases q = 0 ⁒ ( .05 ) ⁒ 1 . Precision is generally 7D. Approximate formulas and graphs are also included.

  • β–Ί
  • Ince (1932) includes eigenvalues a n , b n , and Fourier coefficients for n = 0 or 1 ⁒ ( 1 ) ⁒ 6 , q = 0 ⁒ ( 1 ) ⁒ 10 ⁒ ( 2 ) ⁒ 20 ⁒ ( 4 ) ⁒ 40 ; 7D. Also ce n ⁑ ( x , q ) , se n ⁑ ( x , q ) for q = 0 ⁒ ( 1 ) ⁒ 10 , x = 1 ⁒ ( 1 ) ⁒ 90 , corresponding to the eigenvalues in the tables; 5D. Notation: a n = 𝑏𝑒 n 2 ⁒ q , b n = π‘π‘œ n 2 ⁒ q .

  • β–Ί
  • Kirkpatrick (1960) contains tables of the modified functions Ce n ⁑ ( x , q ) , Se n + 1 ⁑ ( x , q ) for n = 0 ⁒ ( 1 ) ⁒ 5 , q = 1 ⁒ ( 1 ) ⁒ 20 , x = 0.1 ⁒ ( .1 ) ⁒ 1 ; 4D or 5D.

  • β–Ί
  • National Bureau of Standards (1967) includes the eigenvalues a n ⁑ ( q ) , b n ⁑ ( q ) for n = 0 ⁒ ( 1 ) ⁒ 3 with q = 0 ⁒ ( .2 ) ⁒ 20 ⁒ ( .5 ) ⁒ 37 ⁒ ( 1 ) ⁒ 100 , and n = 4 ⁒ ( 1 ) ⁒ 15 with q = 0 ⁒ ( 2 ) ⁒ 100 ; Fourier coefficients for ce n ⁑ ( x , q ) and se n ⁑ ( x , q ) for n = 0 ⁒ ( 1 ) ⁒ 15 , n = 1 ⁒ ( 1 ) ⁒ 15 , respectively, and various values of q in the interval [ 0 , 100 ] ; joining factors g e , n ⁑ ( q ) , f e , n ⁑ ( q ) for n = 0 ⁒ ( 1 ) ⁒ 15 with q = 0 ⁒ ( .5 ⁒  to  ⁒ 10 ) ⁒ 100 (but in a different notation). Also, eigenvalues for large values of q . Precision is generally 8D.

  • β–Ί
  • Zhang and Jin (1996, pp. 521–532) includes the eigenvalues a n ⁑ ( q ) , b n + 1 ⁑ ( q ) for n = 0 ⁒ ( 1 ) ⁒ 4 , q = 0 ⁒ ( 1 ) ⁒ 50 ; n = 0 ⁒ ( 1 ) ⁒ 20 ( a ’s) or 19 ( b ’s), q = 1 , 3 , 5 , 10 , 15 , 25 , 50 ⁒ ( 50 ) ⁒ 200 . Fourier coefficients for ce n ⁑ ( x , 10 ) , se n + 1 ⁑ ( x , 10 ) , n = 0 ⁒ ( 1 ) ⁒ 7 . Mathieu functions ce n ⁑ ( x , 10 ) , se n + 1 ⁑ ( x , 10 ) , and their first x -derivatives for n = 0 ⁒ ( 1 ) ⁒ 4 , x = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ . Modified Mathieu functions Mc n ( j ) ⁑ ( x , 10 ) , Ms n + 1 ( j ) ⁑ ( x , 10 ) , and their first x -derivatives for n = 0 ⁒ ( 1 ) ⁒ 4 , j = 1 , 2 , x = 0 ⁒ ( .2 ) ⁒ 4 . Precision is mostly 9S.

  • 27: Bibliography W
    β–Ί
  • R. S. Ward (1987) The Nahm equations, finite-gap potentials and Lamé functions. J. Phys. A 20 (10), pp. 2679–2683.
  • β–Ί
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • β–Ί
  • E. J. Weniger and J. ČíΕΎek (1990) Rational approximations for the modified Bessel function of the second kind. Comput. Phys. Comm. 59 (3), pp. 471–493.
  • β–Ί
  • E. J. Weniger (2007) Asymptotic Approximations to Truncation Errors of Series Representations for Special Functions. In Algorithms for Approximation, A. Iske and J. Levesley (Eds.), pp. 331–348.
  • β–Ί
  • H. Werner, J. Stoer, and W. Bommas (1967) Rational Chebyshev approximation. Numer. Math. 10 (4), pp. 289–306.
  • 28: 34.8 Approximations for Large Parameters
    §34.8 Approximations for Large Parameters
    β–ΊSemiclassical (WKBJ) approximations in terms of trigonometric or exponential functions are given in Varshalovich et al. (1988, §§8.9, 9.9, 10.7). Uniform approximations in terms of Airy functions for the 3 ⁒ j and 6 ⁒ j symbols are given in Schulten and Gordon (1975b). For approximations for the 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols with error bounds see Flude (1998), Chen et al. (1999), and Watson (1999): these references also cite earlier work.
    29: Bibliography B
    β–Ί
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • β–Ί
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • β–Ί
  • M. V. Berry (1966) Uniform approximation for potential scattering involving a rainbow. Proc. Phys. Soc. 89 (3), pp. 479–490.
  • β–Ί
  • M. V. Berry (1969) Uniform approximation: A new concept in wave theory. Science Progress (Oxford) 57, pp. 43–64.
  • β–Ί
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • 30: 8.16 Generalizations
    β–ΊFor a generalization of the incomplete gamma function, including asymptotic approximations, see Chaudhry and Zubair (1994, 2001) and Chaudhry et al. (1996). …