About the Project

Olver confluent hypergeometric function

AdvancedHelp

(0.014 seconds)

1—10 of 37 matching pages

1: 13.1 Special Notation
The main functions treated in this chapter are the Kummer functions M ( a , b , z ) and U ( a , b , z ) , Olver’s function 𝐌 ( a , b , z ) , and the Whittaker functions M κ , μ ( z ) and W κ , μ ( z ) . …
2: 13.10 Integrals
13.10.1 𝐌 ( a , b , z ) d z = 1 a 1 𝐌 ( a 1 , b 1 , z ) ,
13.10.5 0 e t t b 1 𝐌 ( a , c , t ) d t = Γ ( b ) Γ ( c a b ) Γ ( c a ) Γ ( c b ) , ( c a ) > b > 0 ,
13.10.10 0 t λ 1 𝐌 ( a , b , t ) d t = Γ ( λ ) Γ ( a λ ) Γ ( a ) Γ ( b λ ) , 0 < λ < a ,
13.10.14 0 e t t 1 2 ν 𝐌 ( a , b , t ) J ν ( 2 x t ) d t = x 1 2 ν e x Γ ( b a ) U ( a , a b + ν + 2 , x ) , x > 0 , 1 < ν < 2 ( b a ) 1 2 ,
13.10.16 0 e t t 1 2 ν U ( a , b , t ) J ν ( 2 x t ) d t = Γ ( ν b + 2 ) x 1 2 ν e x 𝐌 ( a , a b + ν + 2 , x ) , x > 0 , max ( b 2 , 1 ) < ν .
3: 13.4 Integral Representations
13.4.1 𝐌 ( a , b , z ) = 1 Γ ( a ) Γ ( b a ) 0 1 e z t t a 1 ( 1 t ) b a 1 d t , b > a > 0 ,
13.4.2 𝐌 ( a , b , z ) = 1 Γ ( b c ) 0 1 𝐌 ( a , c , z t ) t c 1 ( 1 t ) b c 1 d t , b > c > 0 ,
13.4.3 𝐌 ( a , b , z ) = z 1 2 1 2 b Γ ( a ) 0 e t t a 1 2 b 1 2 J b 1 ( 2 z t ) d t , a > 0 .
13.4.9 𝐌 ( a , b , z ) = Γ ( 1 + a b ) 2 π i Γ ( a ) 0 ( 1 + ) e z t t a 1 ( t 1 ) b a 1 d t , b a 1 , 2 , 3 , , a > 0 .
13.4.13 𝐌 ( a , b , z ) = z 1 b 2 π i ( 0 + , 1 + ) e z t t b ( 1 1 t ) a d t , | ph z | < 1 2 π .
4: 13.2 Definitions and Basic Properties
13.2.3 𝐌 ( a , b , z ) = s = 0 ( a ) s Γ ( b + s ) s ! z s ,
13.2.34 𝒲 { 𝐌 ( a , b , z ) , U ( a , b , z ) } = z b e z / Γ ( a ) ,
13.2.35 𝒲 { 𝐌 ( a , b , z ) , e z U ( b a , b , e ± π i z ) } = e b π i z b e z / Γ ( b a ) ,
13.2.36 𝒲 { z 1 b 𝐌 ( a b + 1 , 2 b , z ) , U ( a , b , z ) } = z b e z / Γ ( a b + 1 ) ,
5: 8.5 Confluent Hypergeometric Representations
8.5.2 γ ( a , z ) = e z 𝐌 ( 1 , 1 + a , z ) = 𝐌 ( a , 1 + a , z ) .
6: 13.11 Series
13.11.3 𝐌 ( a , b , z ) = e 1 2 z s = 0 A s ( b 2 a ) 1 2 ( 1 b s ) ( 1 2 z ) 1 2 ( 1 b + s ) J b 1 + s ( 2 z ( b 2 a ) ) ,
7: 13.7 Asymptotic Expansions for Large Argument
13.7.2 𝐌 ( a , b , z ) e z z a b Γ ( a ) s = 0 ( 1 a ) s ( b a ) s s ! z s + e ± π i a z a Γ ( b a ) s = 0 ( a ) s ( a b + 1 ) s s ! ( z ) s , 1 2 π + δ ± ph z 3 2 π δ ,
8: 13.8 Asymptotic Approximations for Large Parameters
13.8.12 𝐌 ( a , b , z ) ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( 1 + a b ) Γ ( a ) ( I b 1 ( 2 a z ) s = 0 p s ( z ) a s z / a I b ( 2 a z ) s = 0 q s ( z ) a s ) ,
13.8.13 𝐌 ( a , b , z ) ( z / a ) ( 1 b ) / 2 e z / 2 Γ ( 1 + a ) Γ ( a + b ) ( J b 1 ( 2 a z ) s = 0 p s ( z ) ( a ) s z / a J b ( 2 a z ) s = 0 q s ( z ) ( a ) s ) ,
9: Bibliography O
  • F. W. J. Olver (1991b) Uniform, exponentially improved, asymptotic expansions for the confluent hypergeometric function and other integral transforms. SIAM J. Math. Anal. 22 (5), pp. 1475–1489.
  • F. W. J. Olver (1993a) Exponentially-improved asymptotic solutions of ordinary differential equations I: The confluent hypergeometric function. SIAM J. Math. Anal. 24 (3), pp. 756–767.
  • 10: 10.22 Integrals
    10.22.54 0 J ν ( b t ) exp ( p 2 t 2 ) t μ 1 d t = ( 1 2 b / p ) ν Γ ( 1 2 ν + 1 2 μ ) 2 p μ exp ( b 2 4 p 2 ) 𝐌 ( 1 2 ν 1 2 μ + 1 , ν + 1 , b 2 4 p 2 ) , ( μ + ν ) > 0 , ( p 2 ) > 0 .