About the Project

Meixner polynomials

AdvancedHelp

(0.002 seconds)

11—20 of 25 matching pages

11: 15.9 Relations to Other Functions
12: Bibliography J
  • X.-S. Jin and R. Wong (1998) Uniform asymptotic expansions for Meixner polynomials. Constr. Approx. 14 (1), pp. 113–150.
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • 13: Errata
    We have significantly expanded the section on associated orthogonal polynomials, including expanded properties of associated Laguerre, Hermite, Meixner–Pollaczek, and corecursive orthogonal and numerator and denominator orthogonal polynomials. …
  • Equation (18.35.9)
    18.35.9
    P n ( λ ) ( x ; ϕ ) = P n ( λ ) ( cos ϕ ; 0 , x sin ϕ ) ,
    P n ( λ ) ( cos θ ; a , b ) = P n ( λ ) ( τ a , b ( θ ) ; θ )

    Previously we gave only the first identity P n ( λ ) ( cos ϕ ; 0 , x sin ϕ ) = P n ( λ ) ( x ; ϕ ) .

  • 14: Bibliography W
  • X.-S. Wang and R. Wong (2011) Global asymptotics of the Meixner polynomials. Asymptotic Analysis 75 (3-4), pp. 211–231.
  • 15: Bibliography K
  • S. F. Khwaja and A. B. Olde Daalhuis (2012) Uniform asymptotic approximations for the Meixner-Sobolev polynomials. Anal. Appl. (Singap.) 10 (3), pp. 345–361.
  • T. H. Koornwinder (1989) Meixner-Pollaczek polynomials and the Heisenberg algebra. J. Math. Phys. 30 (4), pp. 767–769.
  • 16: Bibliography L
  • X. Li and R. Wong (2001) On the asymptotics of the Meixner-Pollaczek polynomials and their zeros. Constr. Approx. 17 (1), pp. 59–90.
  • 17: 18.2 General Orthogonal Polynomials
    This happens, for example, with the continuous Hahn polynomials and Meixner–Pollaczek polynomials18.20(i)). … The generating functions (18.12.13), (18.12.15), (18.23.3), (18.23.4), (18.23.5) and (18.23.7) for Laguerre, Hermite, Krawtchouk, Meixner, Charlier and Meixner–Pollaczek polynomials, respectively, can be written in the form (18.2.45). …
    18: Bibliography B
  • P. L. Butzer and T. H. Koornwinder (2019) Josef Meixner: his life and his orthogonal polynomials. Indag. Math. (N.S.) 30 (1), pp. 250–264.
  • 19: Gerhard Wolf
    Wolf has published papers on Mathieu functions, orthogonal polynomials, and Heun functions. … Meixner and F. …
    20: 28.34 Methods of Computation
  • (e)

    Solution of the continued-fraction equations (28.6.16)–(28.6.19) and (28.15.2) by successive approximation. See Blanch (1966), Shirts (1993a), and Meixner and Schäfke (1954, §2.87).

  • (f)

    Asymptotic approximations by zeros of orthogonal polynomials of increasing degree. See Volkmer (2008). This method also applies to eigenvalues of the Whittaker–Hill equation (§28.31(i)) and eigenvalues of Lamé functions (§29.3(i)).

  • (d)

    Solution of the systems of linear algebraic equations (28.4.5)–(28.4.8) and (28.14.4), with the conditions (28.4.9)–(28.4.12) and (28.14.5), by boundary-value methods (§3.6) to determine the Fourier coefficients. Subsequently, the Fourier series can be summed with the aid of Clenshaw’s algorithm (§3.11(ii)). See Meixner and Schäfke (1954, §2.87). This procedure can be combined with §28.34(ii)(d).