About the Project

Mehler–Sonine integrals

AdvancedHelp

(0.000 seconds)

11—20 of 425 matching pages

11: 10.9 Integral Representations
§10.9 Integral Representations
MehlerSonine and Related Integrals
§10.9(ii) Contour Integrals
Hankel’s Integrals
12: 14.12 Integral Representations
§14.12 Integral Representations
§14.12(i) 1 < x < 1
Mehler–Dirichlet Formula
Neumann’s Integral
Heine’s Integral
13: Bibliography O
  • F. Oberhettinger and T. P. Higgins (1961) Tables of Lebedev, Mehler and Generalized Mehler Transforms. Mathematical Note Technical Report 246, Boeing Scientific Research Lab, Seattle.
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • S. Okui (1975) Complete elliptic integrals resulting from infinite integrals of Bessel functions. II. J. Res. Nat. Bur. Standards Sect. B 79B (3-4), pp. 137–170.
  • A. B. Olde Daalhuis and N. M. Temme (1994) Uniform Airy-type expansions of integrals. SIAM J. Math. Anal. 25 (2), pp. 304–321.
  • I. Olkin (1959) A class of integral identities with matrix argument. Duke Math. J. 26 (2), pp. 207–213.
  • 14: 14.20 Conical (or Mehler) Functions
    §14.20 Conical (or Mehler) Functions
    Solutions are known as conical or Mehler functions. …
    §14.20(iv) Integral Representation
    §14.20(vi) Generalized Mehler–Fock Transformation
    §14.20(x) Zeros and Integrals
    15: 18.10 Integral Representations
    §18.10 Integral Representations
    §18.10(i) Dirichlet–Mehler-Type Integral Representations
    Ultraspherical
    Legendre
    Jacobi
    16: 14.1 Special Notation
    The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). …
    17: Bibliography G
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • W. Gautschi (1973) Algorithm 471: Exponential integrals. Comm. ACM 16 (12), pp. 761–763.
  • M. Geller and E. W. Ng (1969) A table of integrals of the exponential integral. J. Res. Nat. Bur. Standards Sect. B 73B, pp. 191–210.
  • M. L. Glasser (1976) Definite integrals of the complete elliptic integral K . J. Res. Nat. Bur. Standards Sect. B 80B (2), pp. 313–323.
  • M. L. Glasser (1979) A method for evaluating certain Bessel integrals. Z. Angew. Math. Phys. 30 (4), pp. 722–723.
  • 18: 14.34 Software
    §14.34(iv) Conical (Mehler) and/or Toroidal Functions
    19: 18.11 Relations to Other Functions
    §18.11(ii) Formulas of Mehler–Heine Type
    20: 18.18 Sums
    Assume also the integrals 1 1 ( f ( x ) ) 2 ( 1 x ) α ( 1 + x ) β d x and 1 1 ( f ( x ) ) 2 ( 1 x ) α + 1 ( 1 + x ) β + 1 d x converge. … Assume also 0 ( f ( x ) ) 2 e x x α d x converges. … For integral representations for products implied by (18.18.8) and (18.18.9) see (18.17.5) and (18.17.6), respectively. …
    Hermite
    Formula (18.18.28) is known as the Mehler formula. …