About the Project

Mehler–Heine type formulas

AdvancedHelp

(0.002 seconds)

31—40 of 291 matching pages

31: 18.27 q -Hahn Class
β–ΊFor other formulas, including q -difference equations, recurrence relations, duality formulas, special cases, and limit relations, see Koekoek et al. (2010, Chapter 14). … β–Ί
18.27.6 P n ( α , β ) ⁑ ( x ; c , d ; q ) = c n ⁒ q ( α + 1 ) ⁒ n ⁒ ( q α + 1 , q α + 1 ⁒ c 1 ⁒ d ; q ) n ( q , q ; q ) n ⁒ P n ⁑ ( q α + 1 ⁒ c 1 ⁒ x ; q α , q β , q α ⁒ c 1 ⁒ d ; q ) ,
β–Ί
18.27.10 p n ⁑ ( x ) = P n ( α , β ) ⁑ ( x ; c , d ; q )
β–Ί
18.27.12_5 lim q 1 P n ( α , β ) ⁑ ( x ; c , d ; q ) = ( c + d 2 ) n ⁒ P n ( α , β ) ⁑ ( 2 ⁒ x c + d c + d ) .
32: Bibliography J
β–Ί
  • E. Jahnke and F. Emde (1945) Tables of Functions with Formulae and Curves. 4th edition, Dover Publications, New York.
  • β–Ί
  • X.-S. Jin and R. Wong (1999) Asymptotic formulas for the zeros of the Meixner polynomials. J. Approx. Theory 96 (2), pp. 281–300.
  • β–Ί
  • F. Johansson (2012) Efficient implementation of the Hardy-Ramanujan-Rademacher formula. LMS J. Comput. Math. 15, pp. 341–359.
  • β–Ί
  • S. Jorna and C. Springer (1971) Derivation of Green-type, transitional and uniform asymptotic expansions from differential equations. V. Angular oblate spheroidal wavefunctions p ⁒ s ¯ n r ⁒ ( Ξ· , h ) and q ⁒ s ¯ n r ⁒ ( Ξ· , h ) for large h . Proc. Roy. Soc. London Ser. A 321, pp. 545–555.
  • 33: 1.3 Determinants, Linear Operators, and Spectral Expansions
    β–Ί
    Krattenthaler’s Formula
    β–ΊOf importance for special functions are infinite determinants of Hill’s type. These have the property that the double series …Hill-type determinants always converge. …
    34: Bibliography
    β–Ί
  • Y. Ameur and J. Cronvall (2023) SzegΕ‘ Type Asymptotics for the Reproducing Kernel in Spaces of Full-Plane Weighted Polynomials. Comm. Math. Phys. 398 (3), pp. 1291–1348.
  • β–Ί
  • G. E. Andrews (1984) Multiple series Rogers-Ramanujan type identities. Pacific J. Math. 114 (2), pp. 267–283.
  • β–Ί
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • β–Ί
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • β–Ί
  • R. Askey (1974) Jacobi polynomials. I. New proofs of Koornwinder’s Laplace type integral representation and Bateman’s bilinear sum. SIAM J. Math. Anal. 5, pp. 119–124.
  • 35: 10.64 Integral Representations
    β–Ί
    Schläfli-Type Integrals
    36: Bibliography M
    β–Ί
  • A. P. Magnus (1995) Painlevé-type differential equations for the recurrence coefficients of semi-classical orthogonal polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 215–237.
  • β–Ί
  • T. Masuda, Y. Ohta, and K. Kajiwara (2002) A determinant formula for a class of rational solutions of Painlevé V equation. Nagoya Math. J. 168, pp. 1–25.
  • β–Ί
  • A. R. Miller and R. B. Paris (2011) Euler-type transformations for the generalized hypergeometric function F r + 1 r + 2 ⁒ ( x ) . Z. Angew. Math. Phys. 62 (1), pp. 31–45.
  • β–Ί
  • A. R. Miller (2003) On a Kummer-type transformation for the generalized hypergeometric function F 2 2 . J. Comput. Appl. Math. 157 (2), pp. 507–509.
  • β–Ί
  • D. S. Moak (1984) The q -analogue of Stirling’s formula. Rocky Mountain J. Math. 14 (2), pp. 403–413.
  • 37: 23.10 Addition Theorems and Other Identities
    β–ΊFor further addition-type identities for the Οƒ -function see Lawden (1989, §6.4). … β–Ί
    §23.10(ii) Duplication Formulas
    β–Ί
    §23.10(iii) n -Tuple Formulas
    38: Sidebar 22.SB1: Decay of a Soliton in a Bose–Einstein Condensate
    β–ΊJacobian elliptic functions arise as solutions to certain nonlinear Schrödinger equations, which model many types of wave propagation phenomena. …
    39: 19.2 Definitions
    β–Ί
    19.2.6 D ⁑ ( Ο• , k ) = 0 Ο• sin 2 ⁑ ΞΈ ⁒ d ΞΈ 1 k 2 ⁒ sin 2 ⁑ ΞΈ = 0 sin ⁑ Ο• t 2 ⁒ d t 1 t 2 ⁒ 1 k 2 ⁒ t 2 = ( F ⁑ ( Ο• , k ) E ⁑ ( Ο• , k ) ) / k 2 .
    β–ΊFormulas involving Ξ  ⁑ ( Ο• , Ξ± 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ⁑ ( x , y ) . …
    40: 5.11 Asymptotic Expansions
    β–Ί
    §5.11(i) Poincaré-Type Expansions
    β–ΊFor explicit formulas for g k in terms of Stirling numbers see Nemes (2013a), and for asymptotic expansions of g k as k see Boyd (1994) and Nemes (2015a). β–Ί
    Terminology
    β–ΊThe expansion (5.11.1) is called Stirling’s series (Whittaker and Watson (1927, §12.33)), whereas the expansion (5.11.3), or sometimes just its leading term, is known as Stirling’s formula (Abramowitz and Stegun (1964, §6.1), Olver (1997b, p. 88)). …