About the Project

Mehler%E2%80%93Dirichlet%20formula

AdvancedHelp

(0.002 seconds)

1—10 of 330 matching pages

1: 14.31 Other Applications
Applications of toroidal functions include expansion of vacuum magnetic fields in stellarators and tokamaks (van Milligen and López Fraguas (1994)), analytic solutions of Poisson’s equation in channel-like geometries (Hoyles et al. (1998)), and Dirichlet problems with toroidal symmetry (Gil et al. (2000)).
§14.31(ii) Conical Functions
These functions are also used in the Mehler–Fock integral transform (§14.20(vi)) for problems in potential and heat theory, and in elementary particle physics (Sneddon (1972, Chapter 7) and Braaksma and Meulenbeld (1967)). The conical functions and Mehler–Fock transform generalize to Jacobi functions and the Jacobi transform; see Koornwinder (1984a) and references therein. …
2: Bibliography O
  • F. Oberhettinger and T. P. Higgins (1961) Tables of Lebedev, Mehler and Generalized Mehler Transforms. Mathematical Note Technical Report 246, Boeing Scientific Research Lab, Seattle.
  • F. Oberhettinger (1973) Fourier Expansions. A Collection of Formulas. Academic Press, New York-London.
  • J. Oliver (1977) An error analysis of the modified Clenshaw method for evaluating Chebyshev and Fourier series. J. Inst. Math. Appl. 20 (3), pp. 379–391.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 93–98.
  • 3: 18.11 Relations to Other Functions
    §18.11(i) Explicit Formulas
    §18.11(ii) Formulas of Mehler–Heine Type
    4: 14.12 Integral Representations
    §14.12(i) 1 < x < 1
    MehlerDirichlet Formula
    5: 14.20 Conical (or Mehler) Functions
    §14.20 Conical (or Mehler) Functions
    Solutions are known as conical or Mehler functions. …
    14.20.2 𝖰 ^ 1 2 + i τ μ ( x ) = ( e μ π i 𝖰 1 2 + i τ μ ( x ) ) 1 2 π sin ( μ π ) 𝖯 1 2 + i τ μ ( x ) .
    14.20.6 P 1 2 + i τ μ ( x ) = i e μ π i sinh ( τ π ) | Γ ( μ + 1 2 + i τ ) | 2 ( Q 1 2 + i τ μ ( x ) Q 1 2 i τ μ ( x ) ) , τ 0 .
    §14.20(vi) Generalized Mehler–Fock Transformation
    6: 18.10 Integral Representations
    §18.10(i) DirichletMehler-Type Integral Representations
    7: 14.1 Special Notation
    The main functions treated in this chapter are the Legendre functions 𝖯 ν ( x ) , 𝖰 ν ( x ) , P ν ( z ) , Q ν ( z ) ; Ferrers functions 𝖯 ν μ ( x ) , 𝖰 ν μ ( x ) (also known as the Legendre functions on the cut); associated Legendre functions P ν μ ( z ) , Q ν μ ( z ) , 𝑸 ν μ ( z ) ; conical functions 𝖯 1 2 + i τ μ ( x ) , 𝖰 1 2 + i τ μ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ μ ( x ) , Q 1 2 + i τ μ ( x ) (also known as Mehler functions). …
    8: Bibliography G
  • G. Gasper (1975) Formulas of the Dirichlet-Mehler Type. In Fractional Calculus and its Applications, B. Ross (Ed.), Lecture Notes in Math., Vol. 457, pp. 207–215.
  • W. Gautschi (1968) Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22, pp. 251–270.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • K. Girstmair (1990b) Dirichlet convolution of cotangent numbers and relative class number formulas. Monatsh. Math. 110 (3-4), pp. 231–256.
  • H. W. Gould (1972) Explicit formulas for Bernoulli numbers. Amer. Math. Monthly 79, pp. 44–51.
  • 9: 14.34 Software
    §14.34(iv) Conical (Mehler) and/or Toroidal Functions
    10: 18.18 Sums
    §18.18(v) Linearization Formulas
    Formula (18.18.27) is known as the Hille–Hardy formula.
    Hermite
    Formula (18.18.28) is known as the Mehler formula. …