About the Project

Leibniz formula for derivatives

AdvancedHelp

(0.002 seconds)

21—30 of 414 matching pages

21: 14.21 Definitions and Basic Properties
14.21.1 ( 1 z 2 ) d 2 w d z 2 2 z d w d z + ( ν ( ν + 1 ) μ 2 1 z 2 ) w = 0 .
§14.21(iii) Properties
This includes, for example, the Wronskian relations (14.2.7)–(14.2.11); hypergeometric representations (14.3.6)–(14.3.10) and (14.3.15)–(14.3.20); results for integer orders (14.6.3)–(14.6.5), (14.6.7), (14.6.8), (14.7.6), (14.7.7), and (14.7.11)–(14.7.16); behavior at singularities (14.8.7)–(14.8.16); connection formulas (14.9.11)–(14.9.16); recurrence relations (14.10.3)–(14.10.7). …
22: 13.15 Recurrence Relations and Derivatives
§13.15 Recurrence Relations and Derivatives
§13.15(ii) Differentiation Formulas
13.15.15 d n d z n ( e 1 2 z z μ 1 2 M κ , μ ( z ) ) = ( 1 ) n ( 2 μ ) n e 1 2 z z μ 1 2 ( n + 1 ) M κ 1 2 n , μ 1 2 n ( z ) ,
13.15.16 d n d z n ( e 1 2 z z μ 1 2 M κ , μ ( z ) ) = ( 1 2 + μ κ ) n ( 1 + 2 μ ) n e 1 2 z z μ 1 2 ( n + 1 ) M κ 1 2 n , μ + 1 2 n ( z ) ,
13.15.26 ( z d d z z ) n ( e 1 2 z z κ 1 W κ , μ ( z ) ) = ( 1 ) n e 1 2 z z κ + n 1 W κ + n , μ ( z ) .
23: 12.2 Differential Equations
12.2.1 d 2 w d z 2 + ( a z 2 + b z + c ) w = 0 ,
12.2.2 d 2 w d z 2 ( 1 4 z 2 + a ) w = 0 ,
12.2.3 d 2 w d z 2 + ( 1 4 z 2 a ) w = 0 ,
§12.2(iv) Reflection Formulas
§12.2(v) Connection Formulas
24: 1.8 Fourier Series
Parseval’s Formula
at every point at which f ( x ) has both a left-hand derivative (that is, (1.4.4) applies when h 0 ) and a right-hand derivative (that is, (1.4.4) applies when h 0 + ). … …
§1.8(iv) Poisson’s Summation Formula
1.8.16 n = e ( n + x ) 2 ω = π ω ( 1 + 2 n = 1 e n 2 π 2 / ω cos ( 2 n π x ) ) , ω > 0 .
25: 24.17 Mathematical Applications
Euler–Maclaurin Summation Formula
Boole Summation Formula
Let 𝒮 n denote the class of functions that have n 1 continuous derivatives on and are polynomials of degree at most n in each interval ( k , k + 1 ) , k . …
26: Bibliography K
  • A. A. Kapaev and A. V. Kitaev (1993) Connection formulae for the first Painlevé transcendent in the complex domain. Lett. Math. Phys. 27 (4), pp. 243–252.
  • S. Karlin and J. L. McGregor (1961) The Hahn polynomials, formulas and an application. Scripta Math. 26, pp. 33–46.
  • M. Katsurada (2003) Asymptotic expansions of certain q -series and a formula of Ramanujan for specific values of the Riemann zeta function. Acta Arith. 107 (3), pp. 269–298.
  • R. P. Kelisky (1957) On formulas involving both the Bernoulli and Fibonacci numbers. Scripta Math. 23, pp. 27–35.
  • T. H. Koornwinder (1977) The addition formula for Laguerre polynomials. SIAM J. Math. Anal. 8 (3), pp. 535–540.
  • 27: 3.8 Nonlinear Equations
    For other efficient derivative-free methods, see Le (1985). …
    §3.8(iv) Zeros of Polynomials
    Explicit formulas for the zeros are available if n 4 ; see §§1.11(iii) and 4.43. No explicit general formulas exist when n 5 . …
    28: 16.8 Differential Equations
    16.8.1 d n w d z n + f n 1 ( z ) d n 1 w d z n 1 + f n 2 ( z ) d n 2 w d z n 2 + + f 1 ( z ) d w d z + f 0 ( z ) w = 0
    𝐷 = d d z ,
    ϑ = z d d z ,
    We have the connection formulaAnalytical continuation formulas for F q q + 1 ( 𝐚 ; 𝐛 ; z ) near z = 1 are given in Bühring (1987b) for the case q = 2 , and in Bühring (1992) for the general case. …
    29: 24.4 Basic Properties
    §24.4(v) Multiplication Formulas
    Next, …
    §24.4(vii) Derivatives
    24.4.34 d d x B n ( x ) = n B n 1 ( x ) , n = 1 , 2 , ,
    24.4.35 d d x E n ( x ) = n E n 1 ( x ) , n = 1 , 2 , .
    30: 18.5 Explicit Representations
    §18.5(ii) Rodrigues Formulas
    Related formula: …See (Erdélyi et al., 1953b, §10.9(37)) for a related formula for ultraspherical polynomials. … and two similar formulas by symmetry; compare the second row in Table 18.6.1. … For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). …