About the Project

Legendre symbol

AdvancedHelp

(0.002 seconds)

11—20 of 41 matching pages

11: 18.6 Symmetry, Special Values, and Limits to Monomials
For Jacobi, ultraspherical, Chebyshev, Legendre, and Hermite polynomials, see Table 18.6.1. …
18.6.1 L n ( α ) ( 0 ) = ( α + 1 ) n n ! .
Table 18.6.1: Classical OP’s: symmetry and special values.
p n ( x ) p n ( x ) p n ( 1 ) p 2 n ( 0 ) p 2 n + 1 ( 0 )
P n ( x ) ( 1 ) n P n ( x ) 1 ( 1 ) n ( 1 2 ) n / n ! 2 ( 1 ) n ( 1 2 ) n + 1 / n !
12: 10.59 Integrals
10.59.1 e i b t 𝗃 n ( t ) d t = { π i n P n ( b ) , 1 < b < 1 , 1 2 π ( ± i ) n , b = ± 1 , 0 , ± b > 1 ,
where P n is the Legendre polynomial (§18.3). …
13: 18.3 Definitions
§18.3 Definitions
This table also includes the following special cases of Jacobi polynomials: ultraspherical, Chebyshev, and Legendre. … For expressions of ultraspherical, Chebyshev, and Legendre polynomials in terms of Jacobi polynomials, see §18.7(i). …
Legendre
Legendre polynomials are special cases of Legendre functions, Ferrers functions, and associated Legendre functions (§14.7(i)). …
14: 18.17 Integrals
18.17.38 0 1 P 2 n ( x ) x z 1 d x = ( 1 ) n ( 1 2 1 2 z ) n 2 ( 1 2 z ) n + 1 , z > 0 ,
18.17.39 0 1 P 2 n + 1 ( x ) x z 1 d x = ( 1 ) n ( 1 1 2 z ) n 2 ( 1 2 + 1 2 z ) n + 1 , z > 1 .
15: 18.5 Explicit Representations
§18.5 Explicit Representations
For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). …
Legendre
P 0 ( x ) = 1 ,
16: 14.12 Integral Representations
17: 14.17 Integrals
14.17.6 1 1 𝖯 l m ( x ) 𝖯 n m ( x ) d x = ( n + m ) ! ( n m ) ! ( n + 1 2 ) δ l , n ,
14.17.7 1 1 𝖯 l m ( x ) 𝖯 n m ( x ) d x = ( 1 ) m l + 1 2 δ l , n ,
14.17.8 1 1 𝖯 n l ( x ) 𝖯 n m ( x ) 1 x 2 d x = ( n + m ) ! ( n m ) ! m δ l , m , m > 0 ,
14.17.9 1 1 𝖯 n l ( x ) 𝖯 n m ( x ) 1 x 2 d x = ( 1 ) l l δ l , m , l > 0 .
18: 14.13 Trigonometric Expansions
14.13.1 𝖯 ν μ ( cos θ ) = 2 μ + 1 ( sin θ ) μ π 1 / 2 k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! sin ( ( ν + μ + 2 k + 1 ) θ ) ,
14.13.2 𝖰 ν μ ( cos θ ) = π 1 / 2 2 μ ( sin θ ) μ k = 0 Γ ( ν + μ + k + 1 ) Γ ( ν + k + 3 2 ) ( μ + 1 2 ) k k ! cos ( ( ν + μ + 2 k + 1 ) θ ) .
19: 18.41 Tables
For P n ( x ) ( = 𝖯 n ( x ) ) see §14.33. … For P n ( x ) , L n ( x ) , and H n ( x ) see §3.5(v). …
20: 14.8 Behavior at Singularities
14.8.2 𝖯 ν m ( x ) ( 1 ) m ( ν m + 1 ) 2 m m ! ( 1 x 2 ) m / 2 , m = 1 , 2 , 3 , , ν m 1 , m 2 , , m ,
14.8.3 𝖰 ν ( x ) = 1 2 ln ( 2 1 x ) γ ψ ( ν + 1 ) + O ( ( 1 x ) ln ( 1 x ) ) , ν 1 , 2 , 3 , ,
14.8.9 𝑸 ν ( x ) = ln ( x 1 ) 2 Γ ( ν + 1 ) + 1 2 ln 2 γ ψ ( ν + 1 ) Γ ( ν + 1 ) + O ( ( x 1 ) ln ( x 1 ) ) , ν 1 , 2 , 3 , ,