About the Project

Legendre functions

AdvancedHelp

(0.010 seconds)

41—50 of 161 matching pages

41: 1 Algebraic and Analytic Methods
42: 14.15 Uniform Asymptotic Approximations
§14.15 Uniform Asymptotic Approximations
§14.15(i) Large μ , Fixed ν
For asymptotic expansions and explicit error bounds, see Dunster (2003b).
§14.15(iii) Large ν , Fixed μ
43: 30.6 Functions of Complex Argument
Relations to Associated Legendre Functions
44: Bibliography S
  • J. Segura and A. Gil (1999) Evaluation of associated Legendre functions off the cut and parabolic cylinder functions. Electron. Trans. Numer. Anal. 9, pp. 137–146.
  • B. D. Sleeman (1966b) The expansion of Lamé functions into series of associated Legendre functions of the second kind. Proc. Cambridge Philos. Soc. 62, pp. 441–452.
  • R. Szmytkowski (2009) On the derivative of the associated Legendre function of the first kind of integer degree with respect to its order (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 46 (1), pp. 231–260.
  • R. Szmytkowski (2011) On the derivative of the associated Legendre function of the first kind of integer order with respect to its degree (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Chem. 49 (7), pp. 1436–1477.
  • R. Szmytkowski (2012) On parameter derivatives of the associated Legendre function of the first kind (with applications to the construction of the associated Legendre function of the second kind of integer degree and order). J. Math. Anal. Appl. 386 (1), pp. 332–342.
  • 45: 16.18 Special Cases
    As a corollary, special cases of the F 1 1 and F 1 2 functions, including Airy functions, Bessel functions, parabolic cylinder functions, Ferrers functions, associated Legendre functions, and many orthogonal polynomials, are all special cases of the Meijer G -function. …
    46: 14.16 Zeros
    §14.16(iii) Interval 1 < x <
    47: 14.20 Conical (or Mehler) Functions
    For 1 < x < 1 and τ > 0 , a numerically satisfactory pair of real conical functions is 𝖯 1 2 + i τ μ ( x ) and 𝖯 1 2 + i τ μ ( x ) . …
    14.20.6 P 1 2 + i τ μ ( x ) = i e μ π i sinh ( τ π ) | Γ ( μ + 1 2 + i τ ) | 2 ( Q 1 2 + i τ μ ( x ) Q 1 2 i τ μ ( x ) ) , τ 0 .
    14.20.11 f ( τ ) = τ π sinh ( τ π ) Γ ( 1 2 μ + i τ ) Γ ( 1 2 μ i τ ) 1 P 1 2 + i τ μ ( x ) g ( x ) d x ,
    14.20.12 g ( x ) = 0 P 1 2 + i τ μ ( x ) f ( τ ) d τ .
    48: Bibliography G
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • A. Gervois and H. Navelet (1985a) Integrals of three Bessel functions and Legendre functions. I. J. Math. Phys. 26 (4), pp. 633–644.
  • A. Gervois and H. Navelet (1985b) Integrals of three Bessel functions and Legendre functions. II. J. Math. Phys. 26 (4), pp. 645–655.
  • A. Gil and J. Segura (1997) Evaluation of Legendre functions of argument greater than one. Comput. Phys. Comm. 105 (2-3), pp. 273–283.
  • 49: 14.11 Derivatives with Respect to Degree or Order
    §14.11 Derivatives with Respect to Degree or Order
    14.11.2 ν 𝖰 ν μ ( x ) = 1 2 π 2 𝖯 ν μ ( x ) + π sin ( μ π ) sin ( ν π ) sin ( ( ν + μ ) π ) 𝖰 ν μ ( x ) 1 2 cot ( ( ν + μ ) π ) 𝖠 ν μ ( x ) + 1 2 csc ( ( ν + μ ) π ) 𝖠 ν μ ( x ) ,
    50: T. Mark Dunster