About the Project

L%E2%80%99H%C3%B4pital%20rule%20for%20derivatives

AdvancedHelp

(0.004 seconds)

21—30 of 467 matching pages

21: Bibliography
β–Ί
  • D. E. Amos (1990) Algorithm 683: A portable FORTRAN subroutine for exponential integrals of a complex argument. ACM Trans. Math. Software 16 (2), pp. 178–182.
  • β–Ί
  • G. E. Andrews (1974) Applications of basic hypergeometric functions. SIAM Rev. 16 (4), pp. 441–484.
  • β–Ί
  • A. Apelblat (1989) Derivatives and integrals with respect to the order of the Struve functions 𝐇 Ξ½ ⁒ ( x ) and 𝐋 Ξ½ ⁒ ( x ) . J. Math. Anal. Appl. 137 (1), pp. 17–36.
  • β–Ί
  • T. M. Apostol (1985b) Note on the trivial zeros of Dirichlet L -functions. Proc. Amer. Math. Soc. 94 (1), pp. 29–30.
  • β–Ί
  • M. J. Atia, A. Martínez-Finkelshtein, P. Martínez-González, and F. Thabet (2014) Quadratic differentials and asymptotics of Laguerre polynomials with varying complex parameters. J. Math. Anal. Appl. 416 (1), pp. 52–80.
  • 22: 18.6 Symmetry, Special Values, and Limits to Monomials
    β–Ί
    18.6.1 L n ( α ) ⁑ ( 0 ) = ( α + 1 ) n n ! .
    β–Ί
    Table 18.6.1: Classical OP’s: symmetry and special values.
    β–Ί β–Ίβ–Ίβ–Ί
    p n ⁑ ( x ) p n ⁑ ( x ) p n ⁑ ( 1 ) p 2 ⁒ n ⁑ ( 0 ) p 2 ⁒ n + 1 ⁑ ( 0 )
    H n ⁑ ( x ) ( 1 ) n ⁒ H n ⁑ ( x ) ( 1 ) n ⁒ ( n + 1 ) n 2 ⁒ ( 1 ) n ⁒ ( n + 1 ) n + 1
    β–Ί
    β–Ί
    18.6.5 lim α L n ( α ) ⁑ ( α ⁒ x ) L n ( α ) ⁑ ( 0 ) = ( 1 x ) n .
    23: 18.9 Recurrence Relations and Derivatives
    §18.9 Recurrence Relations and Derivatives
    β–Ί
    Jacobi
    β–Ί
    Ultraspherical
    β–Ί
    Laguerre
    β–Ί
    Hermite
    24: 29.1 Special Notation
    β–ΊAll derivatives are denoted by differentials, not by primes. … β–ΊThe relation to the Lamé functions L c ⁒ Ξ½ ( m ) , L s ⁒ Ξ½ ( m ) of Jansen (1977) is given by β–Ί
    𝐸𝑐 Ξ½ 2 ⁒ m ⁑ ( z , k 2 ) = ( 1 ) m ⁒ L c ⁒ Ξ½ ( 2 ⁒ m ) ⁑ ( ψ , k 2 ) ,
    β–Ί
    𝐸𝑐 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 ) = ( 1 ) m ⁒ L s ⁒ Ξ½ ( 2 ⁒ m + 1 ) ⁑ ( ψ , k 2 ) ,
    β–Ί
    𝐸𝑠 Ξ½ 2 ⁒ m + 1 ⁑ ( z , k 2 ) = ( 1 ) m ⁒ L c ⁒ Ξ½ ( 2 ⁒ m + 1 ) ⁑ ( ψ , k 2 ) ,
    25: 18.1 Notation
    β–Ί
  • Laguerre: L n ( Ξ± ) ⁑ ( x ) and L n ⁑ ( x ) = L n ( 0 ) ⁑ ( x ) . ( L n ( Ξ± ) ⁑ ( x ) with Ξ± 0 is also called Generalized Laguerre.)

  • β–Ί
  • Hermite: H n ⁑ ( x ) , 𝐻𝑒 n ⁑ ( x ) .

  • β–Ί
  • q -Laguerre: L n ( Ξ± ) ⁑ ( x ; q ) .

  • β–Ί
  • Continuous q -Hermite: H n ⁑ ( x | q ) .

  • 26: 11.2 Definitions
    β–Ί
    11.2.2 𝐋 Ξ½ ⁑ ( z ) = i ⁒ e 1 2 ⁒ Ο€ ⁒ i ⁒ Ξ½ ⁒ 𝐇 Ξ½ ⁑ ( i ⁒ z ) = ( 1 2 ⁒ z ) Ξ½ + 1 ⁒ n = 0 ( 1 2 ⁒ z ) 2 ⁒ n Ξ“ ⁑ ( n + 3 2 ) ⁒ Ξ“ ⁑ ( n + Ξ½ + 3 2 ) .
    β–ΊThe functions z Ξ½ 1 ⁒ 𝐇 Ξ½ ⁑ ( z ) and z Ξ½ 1 ⁒ 𝐋 Ξ½ ⁑ ( z ) are entire functions of z and Ξ½ . … β–Ί
    11.2.4 𝐋 0 ⁑ ( z ) = 2 Ο€ ⁒ ( z + z 3 1 2 3 2 + z 5 1 2 3 2 5 2 + β‹― ) .
    β–ΊUnless indicated otherwise, 𝐇 Ξ½ ⁑ ( z ) , 𝐊 Ξ½ ⁑ ( z ) , 𝐋 Ξ½ ⁑ ( z ) , and 𝐌 Ξ½ ⁑ ( z ) assume their principal values throughout the DLMF. … β–Ί
    11.2.10 w = 𝐋 Ξ½ ⁑ ( z ) , 𝐌 Ξ½ ⁑ ( z ) .
    27: 23.19 Interrelations
    β–Ί
    23.19.1 Ξ» ⁑ ( Ο„ ) = 16 ⁒ ( Ξ· 2 ⁑ ( 2 ⁒ Ο„ ) ⁒ Ξ· ⁑ ( 1 2 ⁒ Ο„ ) Ξ· 3 ⁑ ( Ο„ ) ) 8 ,
    β–Ί
    23.19.3 J ⁑ ( Ο„ ) = g 2 3 ⁑ g 2 3 ⁑ 27 ⁒ g 3 2 ⁑ ,
    β–Ίwhere g 2 ⁑ , g 3 ⁑ are the invariants of the lattice 𝕃 with generators 1 and Ο„ ; see §23.3(i). … β–Ί
    23.19.4 Ξ” = ( 2 ⁒ Ο€ ) 12 ⁒ Ξ· 24 ⁑ ( Ο„ ) .
    28: 11.7 Integrals and Sums
    β–Ί
    11.7.3 z Ξ½ ⁒ 𝐋 Ξ½ 1 ⁑ ( z ) ⁒ d z = z Ξ½ ⁒ 𝐋 Ξ½ ⁑ ( z ) ,
    β–Ί
    11.7.4 z Ξ½ ⁒ 𝐋 Ξ½ + 1 ⁑ ( z ) ⁒ d z = z Ξ½ ⁒ 𝐋 Ξ½ ⁑ ( z ) 2 Ξ½ ⁒ z Ο€ ⁒ Ξ“ ⁑ ( Ξ½ + 3 2 ) .
    β–ΊThe following Laplace transforms of 𝐇 Ξ½ ⁑ ( t ) require ⁑ a > 0 for convergence, while those of 𝐋 Ξ½ ⁑ ( t ) require ⁑ a > 1 . … β–Ί
    0 e a ⁒ t ⁒ 𝐋 1 ⁑ ( t ) ⁒ d t
    β–ΊFor integrals of 𝐇 Ξ½ ⁑ ( x ) and 𝐋 Ξ½ ⁑ ( x ) with respect to the order Ξ½ , see Apelblat (1989). …
    29: 11.13 Methods of Computation
    β–ΊFor a review of methods for the computation of 𝐇 Ξ½ ⁑ ( z ) see Zanovello (1975). For simple and effective approximations to 𝐇 0 ⁑ ( z ) and 𝐇 1 ⁑ ( z ) see Aarts and Janssen (2016). … β–ΊSubsequently 𝐇 Ξ½ ⁑ ( z ) and 𝐋 Ξ½ ⁑ ( z ) are obtainable via (11.2.5) and (11.2.6). … β–ΊThen from the limiting forms for small argument (§§11.2(i), 10.7(i), 10.30(i)), limiting forms for large argument (§§11.6(i), 10.7(ii), 10.30(ii)), and the connection formulas (11.2.5) and (11.2.6), it is seen that 𝐇 Ξ½ ⁑ ( x ) and 𝐋 Ξ½ ⁑ ( x ) can be computed in a stable manner by integrating forwards, that is, from the origin toward infinity. … β–ΊSequences of values of 𝐇 Ξ½ ⁑ ( z ) and 𝐋 Ξ½ ⁑ ( z ) , with z fixed, can be computed by application of the inhomogeneous difference equations (11.4.23) and (11.4.25). …
    30: 23.21 Physical Applications
    β–Ί
    23.21.1 x 2 ρ e 1 ⁑ + y 2 ρ e 2 ⁑ + z 2 ρ e 3 ⁑ = 1 ,
    β–Ί
    23.21.2 ( η ΢ ) ⁒ ( ΢ ξ ) ⁒ ( ξ η ) ⁒ 2 = ( ΢ η ) ⁒ f ⁑ ( ξ ) ⁒ f ⁑ ( ξ ) ⁒ ξ + ( ξ ΢ ) ⁒ f ⁑ ( η ) ⁒ f ⁑ ( η ) ⁒ η + ( η ξ ) ⁒ f ⁑ ( ΢ ) ⁒ f ⁑ ( ΢ ) ⁒ ΢ ,
    β–Ί
    23.21.3 f ⁑ ( ρ ) = 2 ⁒ ( ( ρ e 1 ⁑ ) ⁒ ( ρ e 2 ⁑ ) ⁒ ( ρ e 3 ⁑ ) ) 1 / 2 .
    β–Ί
    23.21.5 ( ⁑ ( v ) ⁑ ( w ) ) ⁒ ( ⁑ ( w ) ⁑ ( u ) ) ⁒ ( ⁑ ( u ) ⁑ ( v ) ) ⁒ 2 = ( ⁑ ( w ) ⁑ ( v ) ) ⁒ 2 u 2 + ( ⁑ ( u ) ⁑ ( w ) ) ⁒ 2 v 2 + ( ⁑ ( v ) ⁑ ( u ) ) ⁒ 2 w 2 .