About the Project

Jordan curve theorem

AdvancedHelp

(0.002 seconds)

11—20 of 157 matching pages

11: 26.1 Special Notation
Other notations for s ( n , k ) , the Stirling numbers of the first kind, include S n ( k ) (Abramowitz and Stegun (1964, Chapter 24), Fort (1948)), S n k (Jordan (1939), Moser and Wyman (1958a)), ( n 1 k 1 ) B n k ( n ) (Milne-Thomson (1933)), ( 1 ) n k S 1 ( n 1 , n k ) (Carlitz (1960), Gould (1960)), ( 1 ) n k [ n k ] (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)). Other notations for S ( n , k ) , the Stirling numbers of the second kind, include 𝒮 n ( k ) (Fort (1948)), 𝔖 n k (Jordan (1939)), σ n k (Moser and Wyman (1958b)), ( n k ) B n k ( k ) (Milne-Thomson (1933)), S 2 ( k , n k ) (Carlitz (1960), Gould (1960)), { n k } (Knuth (1992), Graham et al. (1994), Rosen et al. (2000)), and also an unconventional symbol in Abramowitz and Stegun (1964, Chapter 24).
12: 27.3 Multiplicative Properties
27.3.4 J k ( n ) = n k p | n ( 1 p k ) ,
13: 1.6 Vectors and Vector-Valued Functions
Green’s Theorem
Stokes’s Theorem
Gauss’s (or Divergence) Theorem
Green’s Theorem (for Volume)
14: 4.18 Inequalities
Jordan’s Inequality
15: 21.10 Methods of Computation
  • Tretkoff and Tretkoff (1984). Here a Hurwitz system is chosen to represent the Riemann surface.

  • Deconinck and van Hoeij (2001). Here a plane algebraic curve representation of the Riemann surface is used.

  • 16: 21.7 Riemann Surfaces
    §21.7(i) Connection of Riemann Theta Functions to Riemann Surfaces
    Belokolos et al. (1994, §2.1)), they are obtainable from plane algebraic curves (Springer (1957), or Riemann (1851)). …Equation (21.7.1) determines a plane algebraic curve in 2 , which is made compact by adding its points at infinity. …
    §21.7(iii) Frobenius’ Identity
    These are Riemann surfaces that may be obtained from algebraic curves of the form …
    17: 27.15 Chinese Remainder Theorem
    §27.15 Chinese Remainder Theorem
    The Chinese remainder theorem states that a system of congruences x a 1 ( mod m 1 ) , , x a k ( mod m k ) , always has a solution if the moduli are relatively prime in pairs; the solution is unique (mod m ), where m is the product of the moduli. This theorem is employed to increase efficiency in calculating with large numbers by making use of smaller numbers in most of the calculation. …By the Chinese remainder theorem each integer in the data can be uniquely represented by its residues (mod m 1 ), (mod m 2 ), (mod m 3 ), and (mod m 4 ), respectively. …These numbers, in turn, are combined by the Chinese remainder theorem to obtain the final result ( mod m ) , which is correct to 20 digits. …
    18: 1.4 Calculus of One Variable
    Mean Value Theorem
    Fundamental Theorem of Calculus
    First Mean Value Theorem
    Second Mean Value Theorem
    §1.4(vi) Taylor’s Theorem for Real Variables
    19: 30.10 Series and Integrals
    For an addition theorem, see Meixner and Schäfke (1954, p. 300) and King and Van Buren (1973). …
    20: 10.44 Sums
    §10.44(i) Multiplication Theorem
    §10.44(ii) Addition Theorems
    Neumann’s Addition Theorem
    Graf’s and Gegenbauer’s Addition Theorems