About the Project

Jensen inequality for integrals

AdvancedHelp

(0.001 seconds)

21—30 of 445 matching pages

21: Bibliography
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • H. Alzer (1997b) On some inequalities for the incomplete gamma function. Math. Comp. 66 (218), pp. 771–778.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1990) Functional inequalities for complete elliptic integrals and their ratios. SIAM J. Math. Anal. 21 (2), pp. 536–549.
  • G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen (1992a) Functional inequalities for hypergeometric functions and complete elliptic integrals. SIAM J. Math. Anal. 23 (2), pp. 512–524.
  • G. D. Anderson and M. K. Vamanamurthy (1985) Inequalities for elliptic integrals. Publ. Inst. Math. (Beograd) (N.S.) 37(51), pp. 61–63.
  • 22: 4.32 Inequalities
    §4.32 Inequalities
    For these and other inequalities involving hyperbolic functions see Mitrinović (1964, pp. 61, 76, 159) and Mitrinović (1970, p. 270).
    23: Bibliography G
  • G. Gasper (1972) An inequality of Turán type for Jacobi polynomials. Proc. Amer. Math. Soc. 32, pp. 435–439.
  • L. Gatteschi (1987) New inequalities for the zeros of Jacobi polynomials. SIAM J. Math. Anal. 18 (6), pp. 1549–1562.
  • R. E. Gaunt (2014) Inequalities for modified Bessel functions and their integrals. J. Math. Anal. Appl. 420 (1), pp. 373–386.
  • W. Gautschi (1974) A harmonic mean inequality for the gamma function. SIAM J. Math. Anal. 5 (2), pp. 278–281.
  • A. Gervois and H. Navelet (1984) Some integrals involving three Bessel functions when their arguments satisfy the triangle inequalities. J. Math. Phys. 25 (11), pp. 3350–3356.
  • 24: Bibliography L
  • A. Laforgia and M. E. Muldoon (1983) Inequalities and approximations for zeros of Bessel functions of small order. SIAM J. Math. Anal. 14 (2), pp. 383–388.
  • A. Laforgia and S. Sismondi (1988) Monotonicity results and inequalities for the gamma and error functions. J. Comput. Appl. Math. 23 (1), pp. 25–33.
  • A. Laforgia (1984) Further inequalities for the gamma function. Math. Comp. 42 (166), pp. 597–600.
  • A. Laforgia (1986) Inequalities for Bessel functions. J. Comput. Appl. Math. 15 (1), pp. 75–81.
  • L. Lorch (1984) Inequalities for ultraspherical polynomials and the gamma function. J. Approx. Theory 40 (2), pp. 115–120.
  • 25: 1.8 Fourier Series
    1.8.5 1 π π π | f ( x ) | 2 d x = 1 2 | a 0 | 2 + n = 1 ( | a n | 2 + | b n | 2 ) ,
    1.8.6 1 2 π π π | f ( x ) | 2 d x = n = | c n | 2 ,
    (1.8.10) continues to apply if either a or b or both are infinite and/or f ( x ) has finitely many singularities in ( a , b ) , provided that the integral converges uniformly (§1.5(iv)) at a , b , and the singularities for all sufficiently large λ . … It follows from definition (1.14.1) that the integral in (1.8.14) is equal to 2 π ( f ) ( 2 π n ) . …
    1.8.15 1 2 f ( 0 ) + n = 1 f ( n ) = 0 f ( x ) d x + 2 n = 1 0 f ( x ) cos ( 2 π n x ) d x .
    26: Bibliography P
  • R. B. Paris (1984) An inequality for the Bessel function J ν ( ν x ) . SIAM J. Math. Anal. 15 (1), pp. 203–205.
  • B. Pichon (1989) Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Comm. 55 (2), pp. 127–136.
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • G. Pittaluga and L. Sacripante (1991) Inequalities for the zeros of the Airy functions. SIAM J. Math. Anal. 22 (1), pp. 260–267.
  • W. H. Press and S. A. Teukolsky (1990) Elliptic integrals. Computers in Physics 4 (1), pp. 92–96.
  • 27: 19.14 Reduction of General Elliptic Integrals
    §19.14 Reduction of General Elliptic Integrals
    (These four cases include 12 integrals in Abramowitz and Stegun (1964, p. 596).) … Legendre (1825–1832) showed that every elliptic integral can be expressed in terms of the three integrals in (19.1.2) supplemented by algebraic, logarithmic, and trigonometric functions. …The choice among 21 transformations for final reduction to Legendre’s normal form depends on inequalities involving the limits of integration and the zeros of the cubic or quartic polynomial. …
    28: 10.37 Inequalities; Monotonicity
    §10.37 Inequalities; Monotonicity
    For sharper inequalities when the variables are real see Paris (1984) and Laforgia (1991). …
    29: 18.14 Inequalities
    §18.14 Inequalities
    Legendre
    Jacobi
    Szegő–Szász Inequality
    30: 19.30 Lengths of Plane Curves
    §19.30 Lengths of Plane Curves
    §19.30(i) Ellipse
    Approximations and inequalities for L ( a , b ) are given in §19.9(i). …
    §19.30(ii) Hyperbola