About the Project

Jacobi%20function

AdvancedHelp

(0.004 seconds)

11—16 of 16 matching pages

11: Errata
  • Chapter 35 Functions of Matrix Argument

    The generalized hypergeometric function of matrix argument F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) , was linked inadvertently as its single variable counterpart F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) . Furthermore, the Jacobi function of matrix argument P ν ( γ , δ ) ( 𝐓 ) , and the Laguerre function of matrix argument L ν ( γ ) ( 𝐓 ) , were also linked inadvertently (and incorrectly) in terms of the single variable counterparts given by P ν ( γ , δ ) ( 𝐓 ) , and L ν ( γ ) ( 𝐓 ) . In order to resolve these inconsistencies, these functions now link correctly to their respective definitions.

  • Equation (22.19.2)
    22.19.2 sin ( 1 2 θ ( t ) ) = sin ( 1 2 α ) sn ( t + K , sin ( 1 2 α ) )

    Originally the first argument to the function sn was given incorrectly as t . The correct argument is t + K .

    Reported 2014-03-05 by Svante Janson.

  • Equation (22.19.3)
    22.19.3 θ ( t ) = 2 am ( t E / 2 , 2 / E )

    Originally the first argument to the function am was given incorrectly as t . The correct argument is t E / 2 .

    Reported 2014-03-05 by Svante Janson.

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • Chapters 8, 20, 36

    Several new equations have been added. See (8.17.24), (20.7.34), §20.11(v), (26.12.27), (36.2.28), and (36.2.29).

  • 12: Bibliography R
  • H. Rademacher (1938) On the partition function p(n). Proc. London Math. Soc. (2) 43 (4), pp. 241–254.
  • M. Rahman (1981) A non-negative representation of the linearization coefficients of the product of Jacobi polynomials. Canad. J. Math. 33 (4), pp. 915–928.
  • H. E. Rauch and A. Lebowitz (1973) Elliptic Functions, Theta Functions, and Riemann Surfaces. The Williams & Wilkins Co., Baltimore, MD.
  • J. Raynal (1979) On the definition and properties of generalized 6 - j  symbols. J. Math. Phys. 20 (12), pp. 2398–2415.
  • R. Reynolds and A. Stauffer (2021) Infinite Sum of the Incomplete Gamma Function Expressed in Terms of the Hurwitz Zeta Function. Mathematics 9 (16).
  • 13: 18.5 Explicit Representations
    §18.5(iii) Finite Power Series, the Hypergeometric Function, and Generalized Hypergeometric Functions
    Jacobi
    For corresponding formulas for Chebyshev, Legendre, and the Hermite 𝐻𝑒 n polynomials apply (18.7.3)–(18.7.6), (18.7.9), and (18.7.11). … The first of each of equations (18.5.7) and (18.5.8) can be regarded as definitions of P n ( α , β ) ( x ) when the conditions α > 1 and β > 1 are not satisfied. …For this reason, and also in the interest of simplicity, in the case of the Jacobi polynomials P n ( α , β ) ( x ) we assume throughout this chapter that α > 1 and β > 1 , unless stated otherwise. …
    14: Bibliography D
  • C. de la Vallée Poussin (1896b) Recherches analytiques sur la théorie des nombres premiers. Deuxième partie. Les fonctions de Dirichlet et les nombres premiers de la forme linéaire M x + N . Ann. Soc. Sci. Bruxelles 20, pp. 281–397 (French).
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • T. M. Dunster (1989) Uniform asymptotic expansions for Whittaker’s confluent hypergeometric functions. SIAM J. Math. Anal. 20 (3), pp. 744–760.
  • T. M. Dunster (1999) Asymptotic approximations for the Jacobi and ultraspherical polynomials, and related functions. Methods Appl. Anal. 6 (3), pp. 21–56.
  • L. Durand (1978) Product formulas and Nicholson-type integrals for Jacobi functions. I. Summary of results. SIAM J. Math. Anal. 9 (1), pp. 76–86.
  • 15: Bibliography G
  • G. Gasper (1972) An inequality of Turán type for Jacobi polynomials. Proc. Amer. Math. Soc. 32, pp. 435–439.
  • L. Gatteschi (1987) New inequalities for the zeros of Jacobi polynomials. SIAM J. Math. Anal. 18 (6), pp. 1549–1562.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • A. Gil, J. Segura, and N. M. Temme (2014) Algorithm 939: computation of the Marcum Q-function. ACM Trans. Math. Softw. 40 (3), pp. 20:1–20:21.
  • Ya. I. Granovskiĭ, I. M. Lutzenko, and A. S. Zhedanov (1992) Mutual integrability, quadratic algebras, and dynamical symmetry. Ann. Phys. 217 (1), pp. 1–20.
  • 16: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. Letessier (1995) Co-recursive associated Jacobi polynomials. J. Comput. Appl. Math. 57 (1-2), pp. 203–213.
  • L. Lorch and P. Szegő (1964) Monotonicity of the differences of zeros of Bessel functions as a function of order. Proc. Amer. Math. Soc. 15 (1), pp. 91–96.
  • Y. L. Luke and J. Wimp (1963) Jacobi polynomial expansions of a generalized hypergeometric function over a semi-infinite ray. Math. Comp. 17 (84), pp. 395–404.