About the Project

Hille–Hardy formula

AdvancedHelp

(0.001 seconds)

21—30 of 264 matching pages

21: Bibliography V
  • A. J. van der Poorten (1980) Some Wonderful Formulas an Introduction to Polylogarithms. In Proceedings of the Queen’s Number Theory Conference, 1979 (Kingston, Ont., 1979), R. Ribenboim (Ed.), Queen’s Papers in Pure and Appl. Math., Vol. 54, Kingston, Ont., pp. 269–286.
  • A. Verma and V. K. Jain (1983) Certain summation formulae for q -series. J. Indian Math. Soc. (N.S.) 47 (1-4), pp. 71–85 (1986).
  • H. Volkmer (1983) Integralgleichungen für periodische Lösungen Hill’scher Differentialgleichungen. Analysis 3 (1-4), pp. 189–203 (German).
  • 22: Bibliography I
  • A. R. Its and A. A. Kapaev (1987) The method of isomonodromic deformations and relation formulas for the second Painlevé transcendent. Izv. Akad. Nauk SSSR Ser. Mat. 51 (4), pp. 878–892, 912 (Russian).
  • A. R. Its and A. A. Kapaev (1998) Connection formulae for the fourth Painlevé transcendent; Clarkson-McLeod solution. J. Phys. A 31 (17), pp. 4073–4113.
  • C. Itzykson and J. B. Zuber (1980) Quantum Field Theory. International Series in Pure and Applied Physics, McGraw-Hill International Book Co., New York.
  • 23: 25.2 Definition and Expansions
    25.2.4 ζ ( s ) = 1 s 1 + n = 0 ( 1 ) n n ! γ n ( s 1 ) n ,
    25.2.5 γ n = lim m ( k = 1 m ( ln k ) n k ( ln m ) n + 1 n + 1 ) .
    §25.2(iii) Representations by the Euler–Maclaurin Formula
    25.2.8 ζ ( s ) = k = 1 N 1 k s + N 1 s s 1 s N x x x s + 1 d x , s > 0 , N = 1 , 2 , 3 , .
    25.2.10 ζ ( s ) = 1 s 1 + 1 2 + k = 1 n ( s + 2 k 2 2 k 1 ) B 2 k 2 k ( s + 2 n 2 n + 1 ) 1 B ~ 2 n + 1 ( x ) x s + 2 n + 1 d x , s > 2 n , n = 1 , 2 , 3 , .
    24: 27.13 Functions
    A general formula states that … Hardy and Littlewood (1925) conjectures that G ( k ) < 2 k + 1 when k is not a power of 2, and that G ( k ) 4 k when k is a power of 2, but the most that is known (in 2009) is G ( k ) < c k ln k for some constant c . … Explicit formulas for r k ( n ) have been obtained by similar methods for k = 6 , 8 , 10 , and 12 , but they are more complicated. …For values of k > 24 the analysis of r k ( n ) is considerably more complicated (see Hardy (1940)). Also, Milne (1996, 2002) announce new infinite families of explicit formulas extending Jacobi’s identities. …
    25: 28.31 Equations of Whittaker–Hill and Ince
    §28.31 Equations of Whittaker–Hill and Ince
    §28.31(i) Whittaker–Hill Equation
    Hill’s equation with three terms …and constant values of A , B , k , and c , is called the Equation of Whittaker–Hill. …
    §28.31(ii) Equation of Ince; Ince Polynomials
    26: Bibliography
  • L. V. Ahlfors (1966) Complex Analysis: An Introduction of the Theory of Analytic Functions of One Complex Variable. 2nd edition, McGraw-Hill Book Co., New York.
  • K. Aomoto (1987) Special value of the hypergeometric function F 2 3 and connection formulae among asymptotic expansions. J. Indian Math. Soc. (N.S.) 51, pp. 161–221.
  • T. M. Apostol (1985a) Formulas for higher derivatives of the Riemann zeta function. Math. Comp. 44 (169), pp. 223–232.
  • T. M. Apostol (2006) Bernoulli’s power-sum formulas revisited. Math. Gaz. 90 (518), pp. 276–279.
  • F. M. Arscott (1967) The Whittaker-Hill equation and the wave equation in paraboloidal co-ordinates. Proc. Roy. Soc. Edinburgh Sect. A 67, pp. 265–276.
  • 27: Bibliography U
  • K. M. Urwin and F. M. Arscott (1970) Theory of the Whittaker-Hill equation. Proc. Roy. Soc. Edinburgh Sect. A 69, pp. 28–44.
  • J. V. Uspensky and M. A. Heaslet (1939) Elementary Number Theory. McGraw-Hill Book Company, Inc., New York.
  • 28: Bibliography N
  • W. Narkiewicz (2000) The Development of Prime Number Theory: From Euclid to Hardy and Littlewood. Springer-Verlag, Berlin.
  • D. Naylor (1984) On simplified asymptotic formulas for a class of Mathieu functions. SIAM J. Math. Anal. 15 (6), pp. 1205–1213.
  • D. Naylor (1987) On a simplified asymptotic formula for the Mathieu function of the third kind. SIAM J. Math. Anal. 18 (6), pp. 1616–1629.
  • G. Nemes (2013a) An explicit formula for the coefficients in Laplace’s method. Constr. Approx. 38 (3), pp. 471–487.
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • 29: 1.4 Calculus of One Variable
    Leibniz’s Formula
    Faà Di Bruno’s Formula
    30: 27 Functions of Number Theory