About the Project

Hankel integrals

AdvancedHelp

(0.002 seconds)

21—30 of 36 matching pages

21: Bibliography C
  • J. B. Campbell (1984) Determination of ν -zeros of Hankel functions. Comput. Phys. Comm. 32 (3), pp. 333–339.
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • N. B. Christensen (1990) Optimized fast Hankel transform filters. Geophysical Prospecting 38 (5), pp. 545–568.
  • P. Cornille (1972) Computation of Hankel transforms. SIAM Rev. 14 (2), pp. 278–285.
  • 22: Bibliography W
  • B. M. Watrasiewicz (1967) Some useful integrals of Si ( x ) , Ci ( x ) and related integrals. Optica Acta 14 (3), pp. 317–322.
  • T. Weider (1999) Algorithm 794: Numerical Hankel transform by the Fortran program HANKEL. ACM Trans. Math. Software 25 (2), pp. 240–250.
  • A. D. Wheelon (1968) Tables of Summable Series and Integrals Involving Bessel Functions. Holden-Day, San Francisco, CA.
  • R. Wong (1976) Error bounds for asymptotic expansions of Hankel transforms. SIAM J. Math. Anal. 7 (6), pp. 799–808.
  • R. Wong (1977) Asymptotic expansions of Hankel transforms of functions with logarithmic singularities. Comput. Math. Appl. 3 (4), pp. 271–286.
  • 23: 18.2 General Orthogonal Polynomials
    More generally than (18.2.1)–(18.2.3), w ( x ) d x may be replaced in (18.2.1) by d μ ( x ) , where the measure μ is the Lebesgue–Stieltjes measure μ α corresponding to a bounded nondecreasing function α on the closure of ( a , b ) with an infinite number of points of increase, and such that a b | x | n d μ ( x ) < for all n . …
    §18.2(ix) Moments
    The Hankel determinant Δ n of order n is defined by Δ 0 = 1 and …It is to be noted that, although formally correct, the results of (18.2.30) are of little utility for numerical work, as Hankel determinants are notoriously ill-conditioned. …
    24: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    0 1 ( 1 + y ν + 1 2 ) | f ( y ) | d y < .
    25: Bibliography H
  • L. Habsieger (1988) Une q -intégrale de Selberg et Askey. SIAM J. Math. Anal. 19 (6), pp. 1475–1489.
  • P. I. Hadži (1975a) Certain integrals that contain a probability function. Bul. Akad. Štiince RSS Moldoven. 1975 (2), pp. 86–88, 95 (Russian).
  • E. W. Hansen (1985) Fast Hankel transform algorithm. IEEE Trans. Acoust. Speech Signal Process. 32 (3), pp. 666–671.
  • Harvard University (1945) Tables of the Modified Hankel Functions of Order One-Third and of their Derivatives. Harvard University Press, Cambridge, MA.
  • H. W. Hethcote (1970) Error bounds for asymptotic approximations of zeros of Hankel functions occurring in diffraction problems. J. Mathematical Phys. 11 (8), pp. 2501–2504.
  • 26: 9.17 Methods of Computation
    §9.17(iii) Integral Representations
    Among the integral representations of the Airy functions the Stieltjes transform (9.10.18) furnishes a way of computing Ai ( z ) in the complex plane, once values of this function can be generated on the positive real axis. … In the first method the integration path for the contour integral (9.5.4) is deformed to coincide with paths of steepest descent (§2.4(iv)). …The second method is to apply generalized Gauss–Laguerre quadrature (§3.5(v)) to the integral (9.5.8). … In consequence of §9.6(i), algorithms for generating Bessel functions, Hankel functions, and modified Bessel functions (§10.74) can also be applied to Ai ( z ) , Bi ( z ) , and their derivatives. …
    27: Bibliography
  • N. I. Akhiezer (1988) Lectures on Integral Transforms. Translations of Mathematical Monographs, Vol. 70, American Mathematical Society, Providence, RI.
  • J. R. Albright and E. P. Gavathas (1986) Integrals involving Airy functions. J. Phys. A 19 (13), pp. 2663–2665.
  • Z. Altaç (1996) Integrals involving Bickley and Bessel functions in radiative transfer, and generalized exponential integral functions. J. Heat Transfer 118 (3), pp. 789–792.
  • D. E. Amos (1980b) Computation of exponential integrals. ACM Trans. Math. Software 6 (3), pp. 365–377.
  • W. L. Anderson (1982) Algorithm 588. Fast Hankel transforms using related and lagged convolutions. ACM Trans. Math. Software 8 (4), pp. 369–370.
  • 28: 10.77 Software
    §10.77(v) Bessel Functions–Real Order and Complex Argument (including Hankel Functions)
    §10.77(ix) Integrals of Bessel Functions
    29: 10.75 Tables
    §10.75(iii) Zeros and Associated Values of the Bessel Functions, Hankel Functions, and their Derivatives
  • Döring (1966) tabulates all zeros of Y 0 ( z ) , Y 1 ( z ) , H 0 ( 1 ) ( z ) , H 1 ( 1 ) ( z ) , that lie in the sector | z | < 158 , | ph z | π , to 10D. Some of the smaller zeros of Y n ( z ) and H n ( 1 ) ( z ) for n = 2 , 3 , 4 , 5 , 15 are also included.

  • Kerimov and Skorokhodov (1985b) tabulates 50 zeros of the principal branches of H 0 ( 1 ) ( z ) and H 1 ( 1 ) ( z ) , 8D.

  • Kerimov and Skorokhodov (1987) tabulates 100 complex double zeros ν of Y ν ( z e π i ) and H ν ( 1 ) ( z e π i ) , 8D.

  • §10.75(iv) Integrals of Bessel Functions
    30: 10.20 Uniform Asymptotic Expansions for Large Order
    §10.20 Uniform Asymptotic Expansions for Large Order
    10.20.6 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 2 e π i / 3 ( 4 ζ 1 z 2 ) 1 4 ( Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 1 3 k = 0 A k ( ζ ) ν 2 k + e ± 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 5 3 k = 0 B k ( ζ ) ν 2 k ) ,
    10.20.9 H ν ( 1 ) ( ν z ) H ν ( 2 ) ( ν z ) } 4 e 2 π i / 3 z ( 1 z 2 4 ζ ) 1 4 ( e 2 π i / 3 Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 4 3 k = 0 C k ( ζ ) ν 2 k + Ai ( e ± 2 π i / 3 ν 2 3 ζ ) ν 2 3 k = 0 D k ( ζ ) ν 2 k ) ,
    §10.20(iii) Double Asymptotic Properties
    For asymptotic properties of the expansions (10.20.4)–(10.20.6) with respect to large values of z see §10.41(v).