About the Project

Gauss transformations

AdvancedHelp

(0.002 seconds)

11—20 of 42 matching pages

11: 31.7 Relations to Other Functions
โ–บ
§31.7(i) Reductions to the Gauss Hypergeometric Function
โ–บOther reductions of H โข โ„“ to a F 1 2 , with at least one free parameter, exist iff the pair ( a , p ) takes one of a finite number of values, where q = ฮฑ โข ฮฒ โข p . …They are analogous to quadratic and cubic hypergeometric transformations (§§15.8(iii)15.8(v)). … โ–บJoyce (1994) gives a reduction in which the independent variable is transformed not polynomially or rationally, but algebraically. … โ–บThe solutions (31.3.1) and (31.3.5) transform into even and odd solutions of Lamé’s equation, respectively. …
12: 35.7 Gaussian Hypergeometric Function of Matrix Argument
โ–บ
Transformations of Parameters
โ–บ
Gauss Formula
โ–บSubject to the conditions (a)–(c), the function f โก ( ๐“ ) = F 1 2 โก ( a , b ; c ; ๐“ ) is the unique solution of each partial differential equation … โ–บSystems of partial differential equations for the F 1 0 (defined in §35.8) and F 1 1 functions of matrix argument can be obtained by applying (35.8.9) and (35.8.10) to (35.7.9). … โ–บ
13: 16.24 Physical Applications
โ–บThey can be expressed as F 2 3 functions with unit argument. The coefficients of transformations between different coupling schemes of three angular momenta are related to the Wigner 6 โข j symbols. These are balanced F 3 4 functions with unit argument. Lastly, special cases of the 9 โข j symbols are F 4 5 functions with unit argument. …
14: 13.23 Integrals
โ–บ
13.23.1 0 e z โข t โข t ฮฝ 1 โข M ฮบ , ฮผ โก ( t ) โข d t = ฮ“ โก ( ฮผ + ฮฝ + 1 2 ) ( z + 1 2 ) ฮผ + ฮฝ + 1 2 โข F 1 2 โก ( 1 2 + ฮผ ฮบ , 1 2 + ฮผ + ฮฝ 1 + 2 โข ฮผ ; 1 z + 1 2 ) , โก ฮผ + ฮฝ + 1 2 > 0 , โก z > 1 2 .
15: 3.5 Quadrature
โ–บ
§3.5(v) Gauss Quadrature
โ–บ
Gauss–Legendre Formula
โ–บ
Gauss–Chebyshev Formula
โ–บ
Gauss–Jacobi Formula
โ–บ
Gauss–Laguerre Formula
16: 18.17 Integrals
โ–บ
18.17.40 0 e a โข x โข L n ( ฮฑ ) โก ( b โข x ) โข x z 1 โข d x = ฮ“ โก ( z + n ) n ! โข ( a b ) n โข a n z โข F 1 2 โก ( n , 1 + ฮฑ z 1 n z ; a a b ) , โก a > 0 , โก z > 0 .
โ–บ
18.17.41 0 e a โข x โข ๐ป๐‘’ n โก ( x ) โข x z 1 โข d x = ฮ“ โก ( z + n ) โข a n 2 โข F 2 2 โก ( 1 2 โข n , 1 2 โข n + 1 2 1 2 โข z 1 2 โข n , 1 2 โข z 1 2 โข n + 1 2 ; 1 2 โข a 2 ) , โก a > 0 . Also, โก z > 0 , n even; โก z > 1 , n odd.
17: 15.8 Transformations of Variable
โ–บ
15.8.28 2 โข z โข ฮ“ โก ( 1 2 ) โข ฮ“ โก ( a + b 1 2 ) ฮ“ โก ( a 1 2 ) โข ฮ“ โก ( b 1 2 ) โข F โก ( a , b ; 3 2 ; z ) = F โก ( 2 โข a 1 , 2 โข b 1 ; a + b 1 2 ; 1 2 1 2 โข z ) F โก ( 2 โข a 1 , 2 โข b 1 ; a + b 1 2 ; 1 2 + 1 2 โข z ) , | ph โก z | < ฯ€ , | ph โก ( 1 z ) | < ฯ€ .
18: 15.19 Methods of Computation
โ–บThe Gauss series (15.2.1) converges for | z | < 1 . … โ–บLarge values of | a | or | b | , for example, delay convergence of the Gauss series, and may also lead to severe cancellation. … โ–บGauss quadrature approximations are discussed in Gautschi (2002b). … โ–บFor example, in the half-plane โก z 1 2 we can use (15.12.2) or (15.12.3) to compute F โก ( a , b ; c + N + 1 ; z ) and F โก ( a , b ; c + N ; z ) , where N is a large positive integer, and then apply (15.5.18) in the backward direction. … …
19: 15.12 Asymptotic Approximations
โ–บBy combination of the foregoing results of this subsection with the linear transformations of §15.8(i) and the connection formulas of §15.10(ii), similar asymptotic approximations for F โก ( a + e 1 โข ฮป , b + e 2 โข ฮป ; c + e 3 โข ฮป ; z ) can be obtained with e j = ± 1 or 0 , j = 1 , 2 , 3 . …
20: 18.3 Definitions
โ–บFormula (18.3.1) can be understood as a Gauss-Chebyshev quadrature, see (3.5.22), (3.5.23). It is also related to a discrete Fourier-cosine transform, see Britanak et al. (2007). …