About the Project

Gauss–Christoffel quadrature

AdvancedHelp

(0.001 seconds)

21—30 of 141 matching pages

21: 16.7 Relations to Other Functions
β–ΊFurther representations of special functions in terms of F q p functions are given in Luke (1969a, §§6.2–6.3), and an extensive list of F q q + 1 functions with rational numbers as parameters is given in Krupnikov and Kölbig (1997).
22: 16.10 Expansions in Series of F q p Functions
§16.10 Expansions in Series of F q p Functions
β–Ί
16.10.1 F q + s p + r ⁑ ( a 1 , , a p , c 1 , , c r b 1 , , b q , d 1 , , d s ; z ⁒ ΞΆ ) = k = 0 ( 𝐚 ) k ⁒ ( Ξ± ) k ⁒ ( Ξ² ) k ⁒ ( z ) k ( 𝐛 ) k ⁒ ( Ξ³ + k ) k ⁒ k ! ⁒ F q + 1 p + 2 ⁑ ( Ξ± + k , Ξ² + k , a 1 + k , , a p + k Ξ³ + 2 ⁒ k + 1 , b 1 + k , , b q + k ; z ) ⁒ F s + 2 r + 2 ⁑ ( k , Ξ³ + k , c 1 , , c r Ξ± , Ξ² , d 1 , , d s ; ΞΆ ) .
β–Ί β–ΊExpansions of the form n = 1 ( ± 1 ) n ⁒ F p + 1 p ⁑ ( 𝐚 ; 𝐛 ; n 2 ⁒ z 2 ) are discussed in Miller (1997), and further series of generalized hypergeometric functions are given in Luke (1969b, Chapter 9), Luke (1975, §§5.10.2 and 5.11), and Prudnikov et al. (1990, §§5.3, 6.8–6.9).
23: 27.10 Periodic Number-Theoretic Functions
β–ΊAnother generalization of Ramanujan’s sum is the Gauss sum G ⁑ ( n , Ο‡ ) associated with a Dirichlet character Ο‡ ( mod k ) . …In particular, G ⁑ ( n , Ο‡ 1 ) = c k ⁑ ( n ) . β–Ί G ⁑ ( n , Ο‡ ) is separable for some n if … β–ΊFor a primitive character Ο‡ ( mod k ) , G ⁑ ( n , Ο‡ ) is separable for every n , and … β–ΊConversely, if G ⁑ ( n , Ο‡ ) is separable for every n , then Ο‡ is primitive (mod k ). …
24: 16.2 Definition and Analytic Properties
β–Ί
§16.2(i) Generalized Hypergeometric Series
β–ΊEquivalently, the function is denoted by F q p ⁑ ( 𝐚 𝐛 ; z ) or F q p ⁑ ( 𝐚 ; 𝐛 ; z ) , and sometimes, for brevity, by F q p ⁑ ( z ) . … β–ΊThe branch obtained by introducing a cut from 1 to + on the real axis, that is, the branch in the sector | ph ⁑ ( 1 z ) | Ο€ , is the principal branch (or principal value) of F q q + 1 ⁑ ( 𝐚 ; 𝐛 ; z ) ; compare §4.2(i). … β–Ί
16.2.3 F q p + 1 ⁑ ( m , 𝐚 𝐛 ; z ) = ( 𝐚 ) m ⁒ ( z ) m ( 𝐛 ) m ⁒ F p q + 1 ⁑ ( m , 1 m 𝐛 1 m 𝐚 ; ( 1 ) p + q z )
β–ΊSee §16.5 for the definition of F q p ⁑ ( 𝐚 ; 𝐛 ; z ) as a contour integral when p > q + 1 and none of the a k is a nonpositive integer. …
25: 16.3 Derivatives and Contiguous Functions
β–Ί β–Ί β–Ί β–ΊTwo generalized hypergeometric functions F q p ⁑ ( 𝐚 ; 𝐛 ; z ) are (generalized) contiguous if they have the same pair of values of p and q , and corresponding parameters differ by integers. … β–Ί
16.3.6 z ⁒ F 1 0 ⁑ ( ; b + 1 ; z ) + b ⁒ ( b 1 ) ⁒ F 1 0 ⁑ ( ; b ; z ) b ⁒ ( b 1 ) ⁒ F 1 0 ⁑ ( ; b 1 ; z ) = 0 ,
26: 15.8 Transformations of Variable
β–Ί
15.8.13 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 1 2 ⁒ z ) a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 b + 1 2 ; ( z 2 z ) 2 ) , | ph ⁑ ( 1 z ) | < Ο€ ,
β–Ί
15.8.14 F ⁑ ( a , b 2 ⁒ b ; z ) = ( 1 z ) a / 2 ⁒ F ⁑ ( 1 2 ⁒ a , b 1 2 ⁒ a b + 1 2 ; z 2 4 ⁒ z 4 ) , | ph ⁑ ( 1 z ) | < Ο€ .
β–Ί
15.8.15 F ⁑ ( a , b a b + 1 ; z ) = ( 1 + z ) a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 a b + 1 ; 4 ⁒ z ( 1 + z ) 2 ) , | z | < 1 ,
β–Ί
15.8.16 F ⁑ ( a , b a b + 1 ; z ) = ( 1 z ) a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a b + 1 2 a b + 1 ; 4 ⁒ z ( 1 z ) 2 ) , | z | < 1 .
β–Ί
15.8.17 F ⁑ ( a , b 1 2 ⁒ ( a + b + 1 ) ; z ) = ( 1 2 ⁒ z ) a ⁒ F ⁑ ( 1 2 ⁒ a , 1 2 ⁒ a + 1 2 1 2 ⁒ ( a + b + 1 ) ; 4 ⁒ z ⁒ ( z 1 ) ( 1 2 ⁒ z ) 2 ) , ⁑ z < 1 2 ,
27: Bibliography R
β–Ί
  • W. P. Reinhardt (2018) Universality properties of Gaussian quadrature, the derivative rule, and a novel approach to Stieltjes inversion.
  • β–Ί
  • R. Roy (2017) Elliptic and modular functions from Gauss to Dedekind to Hecke. Cambridge University Press, Cambridge.
  • β–Ί
  • J. Rys, M. Dupuis, and H. F. King (1983) Computation of electron repulsion integrals using the Rys quadrature method. J. Comput. Chem. 4 (2), pp. 154–175.
  • 28: 16.4 Argument Unity
    β–ΊThe function F q q + 1 ⁑ ( 𝐚 ; 𝐛 ; z ) is well-poised if … β–ΊThe function F q q + 1 with argument unity and general values of the parameters is discussed in Bühring (1992). … β–ΊFor generalizations involving F r + 2 r + 3 functions see Kim et al. (2013). … β–ΊThere are two types of three-term identities for F 2 3 ’s. … β–ΊTransformations for both balanced F 3 4 ⁑ ( 1 ) and very well-poised F 6 7 ⁑ ( 1 ) are included in Bailey (1964, pp. 56–63). …
    29: 35.8 Generalized Hypergeometric Functions of Matrix Argument
    β–Ί
    §35.8(iii) F 2 3 Case
    β–Ί
    Kummer Transformation
    β–Ί
    Thomae Transformation
    β–ΊMultidimensional Mellin–Barnes integrals are established in Ding et al. (1996) for the functions F q p and F p p + 1 of matrix argument. A similar result for the F 1 0 function of matrix argument is given in Faraut and Korányi (1994, p. 346). …
    30: 16.9 Zeros
    β–ΊThen F p p ⁑ ( 𝐚 ; 𝐛 ; z ) has at most finitely many zeros if and only if the a j can be re-indexed for j = 1 , , p in such a way that a j b j is a nonnegative integer. … β–ΊThen F p p ⁑ ( 𝐚 ; 𝐛 ; z ) has at most finitely many real zeros. …