About the Project

Gauss–Christoffel quadrature

AdvancedHelp

(0.001 seconds)

1—10 of 141 matching pages

1: 3.5 Quadrature
§3.5(v) Gauss Quadrature
In Gauss quadrature (also known as GaussChristoffel quadrature) we use (3.5.15) with nodes x k the zeros of p n , and weights w k given by …The remainder is given by …
Gauss–Laguerre Formula
§3.5(viii) Complex Gauss Quadrature
2: Bibliography G
  • M. J. Gander and A. H. Karp (2001) Stable computation of high order Gauss quadrature rules using discretization for measures in radiation transfer. J. Quant. Spectrosc. Radiat. Transfer 68 (2), pp. 213–223.
  • W. Gautschi (1994) Algorithm 726: ORTHPOL — a package of routines for generating orthogonal polynomials and Gauss-type quadrature rules. ACM Trans. Math. Software 20 (1), pp. 21–62.
  • W. Gautschi (1968) Construction of Gauss-Christoffel quadrature formulas. Math. Comp. 22, pp. 251–270.
  • W. Gautschi (2002b) Gauss quadrature approximations to hypergeometric and confluent hypergeometric functions. J. Comput. Appl. Math. 139 (1), pp. 173–187.
  • G. H. Golub and J. H. Welsch (1969) Calculation of Gauss quadrature rules. Math. Comp. 23 (106), pp. 221–230.
  • 3: 35.10 Methods of Computation
    Other methods include numerical quadrature applied to double and multiple integral representations. See Yan (1992) for the F 1 1 and F 1 2 functions of matrix argument in the case m = 2 , and Bingham et al. (1992) for Monte Carlo simulation on 𝐎 ( m ) applied to a generalization of the integral (35.5.8). …
    4: 15.19 Methods of Computation
    The Gauss series (15.2.1) converges for | z | < 1 . … Large values of | a | or | b | , for example, delay convergence of the Gauss series, and may also lead to severe cancellation. For fast computation of F ( a , b ; c ; z ) with a , b and c complex, and with application to Pöschl–Teller–Ginocchio potential wave functions, see Michel and Stoitsov (2008). … Gauss quadrature approximations are discussed in Gautschi (2002b). … For example, in the half-plane z 1 2 we can use (15.12.2) or (15.12.3) to compute F ( a , b ; c + N + 1 ; z ) and F ( a , b ; c + N ; z ) , where N is a large positive integer, and then apply (15.5.18) in the backward direction. …
    5: 18.2 General Orthogonal Polynomials
    §18.2(v) Christoffel–Darboux Formula
    18.2.12 K n ( x , y ) = 0 n p ( x ) p ( y ) h = k n h n k n + 1 p n + 1 ( x ) p n ( y ) p n ( x ) p n + 1 ( y ) x y , x y ,
    Confluent Form
    For usage of the zeros of an OP in Gauss quadrature see §3.5(v). … are the Christoffel numbers, see also (3.5.18). …
    6: 18.38 Mathematical Applications
    Quadrature
    Classical OP’s play a fundamental role in Gaussian quadrature. …
    Quadrature “Extended” to Pseudo-Spectral (DVR) Representations of Operators in One and Many Dimensions
    The basic ideas of Gaussian quadrature, and their extensions to non-classical weight functions, and the computation of the corresponding quadrature abscissas and weights, have led to discrete variable representations, or DVRs, of Sturm–Liouville and other differential operators. … For the generalized hypergeometric function F 2 3 see (16.2.1). …
    7: 9.17 Methods of Computation
    For details, including the application of a generalized form of Gaussian quadrature, see Gordon (1969, Appendix A) and Schulten et al. (1979). … The second method is to apply generalized Gauss–Laguerre quadrature3.5(v)) to the integral (9.5.8). … For quadrature methods for Scorer functions see Gil et al. (2001), Lee (1980), and Gordon (1970, Appendix A); but see also Gautschi (1983). …
    8: 15.5 Derivatives and Contiguous Functions
    The six functions F ( a ± 1 , b ; c ; z ) , F ( a , b ± 1 ; c ; z ) , F ( a , b ; c ± 1 ; z ) are said to be contiguous to F ( a , b ; c ; z ) .
    15.5.11 ( c a ) F ( a 1 , b ; c ; z ) + ( 2 a c + ( b a ) z ) F ( a , b ; c ; z ) + a ( z 1 ) F ( a + 1 , b ; c ; z ) = 0 ,
    15.5.12 ( b a ) F ( a , b ; c ; z ) + a F ( a + 1 , b ; c ; z ) b F ( a , b + 1 ; c ; z ) = 0 ,
    By repeated applications of (15.5.11)–(15.5.18) any function F ( a + k , b + ; c + m ; z ) , in which k , , m are integers, can be expressed as a linear combination of F ( a , b ; c ; z ) and any one of its contiguous functions, with coefficients that are rational functions of a , b , c , and z . …
    15.5.20 z ( 1 z ) ( d F ( a , b ; c ; z ) / d z ) = ( c a ) F ( a 1 , b ; c ; z ) + ( a c + b z ) F ( a , b ; c ; z ) = ( c b ) F ( a , b 1 ; c ; z ) + ( b c + a z ) F ( a , b ; c ; z ) ,
    9: 6.18 Methods of Computation
    Quadrature of the integral representations is another effective method. For example, the Gauss–Laguerre formula (§3.5(v)) can be applied to (6.2.2); see Todd (1954) and Tseng and Lee (1998). For an application of the Gauss–Legendre formula (§3.5(v)) see Tooper and Mark (1968). … Power series, asymptotic expansions, and quadrature can also be used to compute the functions f ( z ) and g ( z ) . …
    10: 15.3 Graphics
    See accompanying text
    Figure 15.3.1: F ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
    See accompanying text
    Figure 15.3.2: F ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
    See accompanying text
    Figure 15.3.3: F ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
    See accompanying text
    Figure 15.3.4: F ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
    See accompanying text
    Figure 15.3.5: F ( 4 3 , 9 16 ; 14 5 ; x + i y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help