About the Project

Gauss%20quadrature

AdvancedHelp

(0.001 seconds)

11—20 of 217 matching pages

11: 6.18 Methods of Computation
Quadrature of the integral representations is another effective method. For example, the Gauss–Laguerre formula (§3.5(v)) can be applied to (6.2.2); see Todd (1954) and Tseng and Lee (1998). For an application of the Gauss–Legendre formula (§3.5(v)) see Tooper and Mark (1968). … Power series, asymptotic expansions, and quadrature can also be used to compute the functions f ( z ) and g ( z ) . …
12: 15.10 Hypergeometric Differential Equation
f 1 ( z ) = F ( a , b c ; z ) ,
f 1 ( z ) = F ( a , b a + b + 1 c ; 1 z ) ,
(b) If c equals n = 1 , 2 , 3 , , and a 1 , 2 , , n 1 , then fundamental solutions in the neighborhood of z = 0 are given by F ( a , b ; n ; z ) and …
15.10.11 w 1 ( z ) = F ( a , b c ; z ) = ( 1 z ) c a b F ( c a , c b c ; z ) = ( 1 z ) a F ( a , c b c ; z z 1 ) = ( 1 z ) b F ( c a , b c ; z z 1 ) .
The ( 6 3 ) = 20 connection formulas for the principal branches of Kummer’s solutions are: …
13: 18.5 Explicit Representations
For the definitions of F 1 2 , F 1 1 , and F 0 2 see §16.2. …
18.5.11_2 T n ( x ) = F 1 2 ( n , n 1 2 ; 1 x 2 ) ,
18.5.11_4 U n ( x ) = ( n + 1 ) F 1 2 ( n , n + 2 3 2 ; 1 x 2 ) .
T 5 ( x ) = 16 x 5 20 x 3 + 5 x ,
14: 8.17 Incomplete Beta Functions
8.17.8 B x ( a , b ) = x a ( 1 x ) b a F ( a + b , 1 ; a + 1 ; x ) ,
8.17.9 B x ( a , b ) = x a ( 1 x ) b 1 a F ( 1 , 1 b a + 1 ; x x 1 ) .
For the hypergeometric function F ( a , b ; c ; z ) see §15.2(i). …
8.17.24 I x ( m , n ) = ( 1 x ) n j = m ( n + j 1 j ) x j , m , n positive integers; 0 x < 1 .
15: 15.3 Graphics
See accompanying text
Figure 15.3.1: F ( 4 3 , 9 16 ; 14 5 ; x ) , 100 x 1 . Magnify
See accompanying text
Figure 15.3.2: F ( 5 , 10 ; 1 ; x ) , 0.023 x 1 . Magnify
See accompanying text
Figure 15.3.3: F ( 1 , 10 ; 10 ; x ) , 3 x 1 . Magnify
See accompanying text
Figure 15.3.4: F ( 5 , 10 ; 1 ; x ) , 1 x 0.022 . Magnify
See accompanying text
Figure 15.3.5: F ( 4 3 , 9 16 ; 14 5 ; x + i y ) , 0 x 2 , 0.5 y 0.5 . … Magnify 3D Help
16: Bibliography C
  • R. G. Campos (1995) A quadrature formula for the Hankel transform. Numer. Algorithms 9 (2), pp. 343–354.
  • A. D. Chave (1983) Numerical integration of related Hankel transforms by quadrature and continued fraction expansion. Geophysics 48 (12), pp. 1671–1686.
  • H. S. Cohl, J. Park, and H. Volkmer (2021) Gauss hypergeometric representations of the Ferrers function of the second kind. SIGMA Symmetry Integrability Geom. Methods Appl. 17, pp. Paper 053, 33.
  • D. A. Cox (1984) The arithmetic-geometric mean of Gauss. Enseign. Math. (2) 30 (3-4), pp. 275–330.
  • D. A. Cox (1985) Gauss and the arithmetic-geometric mean. Notices Amer. Math. Soc. 32 (2), pp. 147–151.
  • 17: 16.12 Products
    16.12.3 ( F 1 2 ( a , b c ; z ) ) 2 = k = 0 ( 2 a ) k ( 2 b ) k ( c 1 2 ) k ( c ) k ( 2 c 1 ) k k ! F 3 4 ( 1 2 k , 1 2 ( 1 k ) , a + b c + 1 2 , 1 2 a + 1 2 , b + 1 2 , 3 2 k c ; 1 ) z k , | z | < 1 .
    18: 19.36 Methods of Computation
    The step from n to n + 1 is an ascending Landen transformation if θ = 1 (leading ultimately to a hyperbolic case of R C ) or a descending Gauss transformation if θ = 1 (leading to a circular case of R C ). … Descending Gauss transformations of Π ( ϕ , α 2 , k ) (see (19.8.20)) are used in Fettis (1965) to compute a large table (see §19.37(iii)). … The function el2 ( x , k c , a , b ) is computed by descending Landen transformations if x is real, or by descending Gauss transformations if x is complex (Bulirsch (1965b)). … For computation of Legendre’s integral of the third kind, see Abramowitz and Stegun (1964, §§17.7 and 17.8, Examples 15, 17, 19, and 20). … Numerical quadrature is slower than most methods for the standard integrals but can be useful for elliptic integrals that have complicated representations in terms of standard integrals. …
    19: Bibliography L
  • P. W. Lawrence, R. M. Corless, and D. J. Jeffrey (2012) Algorithm 917: complex double-precision evaluation of the Wright ω function. ACM Trans. Math. Software 38 (3), pp. Art. 20, 17.
  • D. J. Leeming (1977) An asymptotic estimate for the Bernoulli and Euler numbers. Canad. Math. Bull. 20 (1), pp. 109–111.
  • J. L. López and P. J. Pagola (2011) A systematic “saddle point near a pole” asymptotic method with application to the Gauss hypergeometric function. Stud. Appl. Math. 127 (1), pp. 24–37.
  • J. L. López and N. M. Temme (2013) New series expansions of the Gauss hypergeometric function. Adv. Comput. Math. 39 (2), pp. 349–365.
  • J. N. Lyness (1971) Adjusted forms of the Fourier coefficient asymptotic expansion and applications in numerical quadrature. Math. Comp. 25 (113), pp. 87–104.
  • 20: 15.4 Special Cases
    F ( a , b ; a ; z ) = ( 1 z ) b ,
    F ( a , b ; b ; z ) = ( 1 z ) a ,