About the Project

Euler product

AdvancedHelp

(0.003 seconds)

31—40 of 92 matching pages

31: 14.17 Integrals
14.17.5 0 1 x σ ( 1 x 2 ) μ / 2 𝖯 ν μ ( x ) d x = Γ ( 1 2 σ + 1 2 ) Γ ( 1 2 σ + 1 ) 2 μ + 1 Γ ( 1 2 σ 1 2 ν + 1 2 μ + 1 ) Γ ( 1 2 σ + 1 2 ν + 1 2 μ + 3 2 ) , σ > 1 , μ > 1 .
§14.17(iv) Definite Integrals of Products
With ψ ( x ) = Γ ( x ) / Γ ( x ) 5.2(i)), …
32: 9.11 Products
§9.11 Products
§9.11(i) Differential Equation
§9.11(ii) Wronskian
§9.11(iv) Indefinite Integrals
§9.11(v) Definite Integrals
33: 9.10 Integrals
9.10.15 0 e p t Ai ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) + Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) ) , p > 0 ,
9.10.16 0 e p t Bi ( t ) d t = 1 3 e p 3 / 3 ( Γ ( 2 3 , 1 3 p 3 ) Γ ( 2 3 ) Γ ( 1 3 , 1 3 p 3 ) Γ ( 1 3 ) ) , p > 0 .
For the confluent hypergeometric function F 1 1 and the incomplete gamma function Γ see §§13.1, 13.2, and 8.2(i). For Laplace transforms of products of Airy functions see Shawagfeh (1992). …
9.10.17 0 t α 1 Ai ( t ) d t = Γ ( α ) 3 ( α + 2 ) / 3 Γ ( 1 3 α + 2 3 ) , α > 0 .
34: 31.14 General Fuchsian Equation
31.14.3 w ( z ) = ( j = 1 N ( z a j ) γ j / 2 ) W ( z ) ,
35: 24.14 Sums
24.14.12 det [ E r + s ] = ( 1 ) n ( n + 1 ) / 2 ( k = 1 n k ! ) 2 .
36: 18.28 Askey–Wilson Class
18.28.19 R n ( x ) = R n ( x ; α , β , γ , δ | q ) = = 0 n q ( q n , α β q n + 1 ; q ) ( α q , β δ q , γ q , q ; q ) j = 0 1 ( 1 q j x + γ δ q 2 j + 1 ) = ϕ 3 4 ( q n , α β q n + 1 , q y , γ δ q y + 1 α q , β δ q , γ q ; q , q ) , α q , β δ q , or γ q = q N ; n = 0 , 1 , , N .
37: 18.17 Integrals
§18.17(ii) Integral Representations for Products
Ultraspherical
Legendre
For addition formulas corresponding to (18.17.5) and (18.17.6) see (18.18.8) and (18.18.9), respectively. … For the beta function B ( a , b ) see §5.12, and for the confluent hypergeometric function F 1 1 see (16.2.1) and Chapter 13. …
38: 11.7 Integrals and Sums
11.7.11 0 t μ ν 1 𝐇 ν ( t ) d t = Γ ( 1 2 μ ) 2 μ ν 1 tan ( 1 2 π μ ) Γ ( ν 1 2 μ + 1 ) , | μ | < 1 , ν > μ 3 2 ,
11.7.12 0 t μ ν 𝐇 μ ( t ) 𝐇 ν ( t ) d t = π Γ ( μ + ν ) 2 μ + ν Γ ( μ + ν + 1 2 ) Γ ( μ + 1 2 ) Γ ( ν + 1 2 ) , ( μ + ν ) > 0 .
For other integrals involving products of Struve functions see Zanovello (1978, 1995). For integrals involving products of 𝐌 ν ( t ) functions, see Paris and Sy (1983, Appendix). …
39: 28.28 Integrals, Integral Representations, and Integral Equations
28.28.32 sinh ( 2 z ) π 2 0 2 π me ν ( t , h 2 ) me ν 2 m ( t , h 2 ) sinh 2 z + sin 2 t d t = ( 1 ) m + 1 i γ ν , m D 1 ( ν , ν + 2 m , z ) ,
28.28.33 γ ν , m = 1 2 π 0 2 π me ν ( t ) me ν 2 m ( t ) d t = ( 1 ) m 4 i π me ν ( 0 ) me ν 2 m ( 0 ) D 1 ( ν , ν + 2 m , 0 ) .
28.28.46 γ ^ n , m = 1 2 π 0 2 π se n ( t , h 2 ) ce m ( t , h 2 ) d t = ( 1 ) p + 1 4 i π se n ( 0 , h 2 ) ce m ( 0 , h 2 ) Dsc 1 ( n , m , 0 ) .
40: 25.15 Dirichlet L -functions
For the principal character χ 1 ( mod k ) , L ( s , χ 1 ) is analytic everywhere except for a simple pole at s = 1 with residue ϕ ( k ) / k , where ϕ ( k ) is Euler’s totient function (§27.2). …
25.15.2 L ( s , χ ) = p ( 1 χ ( p ) p s ) 1 , s > 1 ,
with the product taken over all primes p , beginning with p = 2 . …
25.15.4 L ( s , χ ) = L ( s , χ 0 ) p | k ( 1 χ 0 ( p ) p s ) ,