About the Project

Euler polynomials

AdvancedHelp

(0.006 seconds)

31—40 of 128 matching pages

31: 18.18 Sums
18.18.1 a n = n ! ( 2 n + α + β + 1 ) Γ ( n + α + β + 1 ) 2 α + β + 1 Γ ( n + α + 1 ) Γ ( n + β + 1 ) 1 1 f ( x ) P n ( α , β ) ( x ) ( 1 x ) α ( 1 + x ) β d x .
18.18.14 P n ( γ , β ) ( x ) = ( β + 1 ) n ( α + β + 2 ) n = 0 n α + β + 2 + 1 α + β + 1 ( α + β + 1 ) ( n + β + γ + 1 ) ( β + 1 ) ( n + α + β + 2 ) ( γ α ) n ( n ) ! P ( α , β ) ( x ) ,
See Andrews et al. (1999, Lemma 7.1.1) for the more general expansion of P n ( γ , δ ) ( x ) in terms of P n ( α , β ) ( x ) . …
18.18.27 n = 0 n ! L n ( α ) ( x ) L n ( α ) ( y ) ( α + 1 ) n z n = Γ ( α + 1 ) ( x y z ) 1 2 α 1 z exp ( ( x + y ) z 1 z ) I α ( 2 ( x y z ) 1 2 1 z ) , | z | < 1 .
32: 5.11 Asymptotic Expansions
5.11.8 Ln Γ ( z + h ) ( z + h 1 2 ) ln z z + 1 2 ln ( 2 π ) + k = 2 ( 1 ) k B k ( h ) k ( k 1 ) z k 1 ,
33: 18.34 Bessel Polynomials
18.34.5_5 2 1 a Γ ( 1 a ) 0 y n ( x ; a ) y m ( x ; a ) x a 2 e 2 x 1 d x = 1 a 1 a 2 n n ! ( 2 a n ) n δ n , m , m , n = 0 , 1 , , N = ( 1 + a ) / 2 .
34: 18.25 Wilson Class: Definitions
Table 18.25.1 lists the transformations of variable, orthogonality ranges, and parameter constraints that are needed in §18.2(i) for the Wilson polynomials W n ( x ; a , b , c , d ) , continuous dual Hahn polynomials S n ( x ; a , b , c ) , Racah polynomials R n ( x ; α , β , γ , δ ) , and dual Hahn polynomials R n ( x ; γ , δ , N ) .
Table 18.25.1: Wilson class OP’s: transformations of variable, orthogonality ranges, and parameter constraints.
OP p n ( x ) x = λ ( y ) Orthogonality range for y Constraints
Racah R n ( x ; α , β , γ , δ ) y ( y + γ + δ + 1 ) { 0 , 1 , , N } α + 1 or β + δ + 1 or γ + 1 = N ; for further constraints see (18.25.1)
18.25.15 h n = n ! ( N n ) ! ( γ + δ + 2 ) N N ! ( γ + 1 ) n ( δ + 1 ) N n .
35: 31.5 Solutions Analytic at Three Singularities: Heun Polynomials
31.5.2 𝐻𝑝 n , m ( a , q n , m ; n , β , γ , δ ; z ) = H ( a , q n , m ; n , β , γ , δ ; z )
36: 18.26 Wilson Class: Continued
18.26.4_1 R n ( y ( y + γ + δ + 1 ) ; γ , δ , N ) = Q y ( n ; γ , δ , N ) ,
18.26.4_2 R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) = R y ( n ( n + α + β + 1 ) ; γ , δ , α , β ) .
18.26.9 lim β R n ( x ; N 1 , β , γ , δ ) = R n ( x ; γ , δ , N ) .
18.26.10 lim δ R n ( x ( x + γ + δ + 1 ) ; α , β , N 1 , δ ) = Q n ( x ; α , β , N ) .
18.26.16 Δ y ( R n ( y ( y + γ + δ + 1 ) ; α , β , γ , δ ) ) Δ y ( y ( y + γ + δ + 1 ) ) = n ( n + α + β + 1 ) ( α + 1 ) ( β + δ + 1 ) ( γ + 1 ) R n 1 ( y ( y + γ + δ + 2 ) ; α + 1 , β + 1 , γ + 1 , δ ) .
37: 3.11 Approximation Techniques
For splines based on Bernoulli and Euler polynomials, see §24.17(ii). …
38: 18.17 Integrals
18.17.9 ( 1 x ) α + μ P n ( α + μ , β μ ) ( x ) Γ ( α + μ + n + 1 ) = x 1 ( 1 y ) α P n ( α , β ) ( y ) Γ ( α + n + 1 ) ( y x ) μ 1 Γ ( μ ) d y , μ > 0 , 1 < x < 1 ,
18.17.12 Γ ( λ μ ) C n ( λ μ ) ( x 1 2 ) x λ μ + 1 2 n = x Γ ( λ ) C n ( λ ) ( y 1 2 ) y λ + 1 2 n ( y x ) μ 1 Γ ( μ ) d y , λ > μ > 0 , x > 0 ,
18.17.14 x α + μ L n ( α + μ ) ( x ) Γ ( α + μ + n + 1 ) = 0 x y α L n ( α ) ( y ) Γ ( α + n + 1 ) ( x y ) μ 1 Γ ( μ ) d y , μ > 0 , x > 0 .
18.17.15 e x L n ( α ) ( x ) = x e y L n ( α + μ ) ( y ) ( y x ) μ 1 Γ ( μ ) d y , μ > 0 .
18.17.28_5 0 e x x α L n ( α ) ( x ) e i x y d x = Γ ( α + n + 1 ) ( i y ) n n ! ( 1 i y ) α + n + 1 ,
39: 25.6 Integer Arguments
§25.6(i) Function Values
40: Errata
  • Equation (18.12.2)
    18.12.2 𝐅 1 0 ( α + 1 ; ( x 1 ) z 2 ) 𝐅 1 0 ( β + 1 ; ( x + 1 ) z 2 ) = ( 1 2 ( 1 x ) z ) 1 2 α J α ( 2 ( 1 x ) z ) ( 1 2 ( 1 + x ) z ) 1 2 β I β ( 2 ( 1 + x ) z ) = n = 0 P n ( α , β ) ( x ) Γ ( n + α + 1 ) Γ ( n + β + 1 ) z n

    This equation was updated to include on the left-hand side, its definition in terms of a product of two 𝐅 1 0 functions.

  • Equation (18.35.5)
    18.35.5 1 1 P n ( λ ) ( x ; a , b ) P m ( λ ) ( x ; a , b ) w ( λ ) ( x ; a , b ) d x = Γ ( 2 λ + n ) n ! ( λ + a + n ) δ n , m , a b a , λ > 0

    This equation was updated to give the full normalization. Previously the constraints on a , b and λ were given in (18.35.6) and included λ > 1 2 . The case 1 2 < λ 0 is now discussed in (18.35.6_2)–(18.35.6_4).

  • Equation (8.7.6)
    8.7.6 Γ ( a , x ) = x a e x n = 0 L n ( a ) ( x ) n + 1 , x > 0 , a < 1 2

    The constraint was updated to include “ a < 1 2 ”.

    Suggested by Walter Gautschi on 2022-10-14

  • Equations (31.16.2) and (31.16.3)
    31.16.2
    x y = a sin 2 θ cos 2 ϕ ,
    ( x 1 ) ( y 1 ) = ( 1 a ) sin 2 θ sin 2 ϕ ,
    ( x a ) ( y a ) = a ( a 1 ) cos 2 θ
    31.16.3 A 0 = n ! ( γ + δ ) n 𝐻𝑝 n , m ( 1 ) , Q 0 A 0 + R 0 A 1 = 0

    Originally x , y were incorrectly defined by the set of equations (31.16.2), given previously as “ x = sin 2 θ cos 2 ϕ ,   y = sin 2 θ sin 2 ϕ ”. In fact, x , y are implicitly defined by the corrected set of equations. In (31.16.3), the initial data A 0 , previously missing, has now been included.

  • Chapter 35 Functions of Matrix Argument

    The generalized hypergeometric function of matrix argument F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) , was linked inadvertently as its single variable counterpart F q p ( a 1 , , a p ; b 1 , , b q ; 𝐓 ) . Furthermore, the Jacobi function of matrix argument P ν ( γ , δ ) ( 𝐓 ) , and the Laguerre function of matrix argument L ν ( γ ) ( 𝐓 ) , were also linked inadvertently (and incorrectly) in terms of the single variable counterparts given by P ν ( γ , δ ) ( 𝐓 ) , and L ν ( γ ) ( 𝐓 ) . In order to resolve these inconsistencies, these functions now link correctly to their respective definitions.