About the Project

Euler%E2%80%93Fermat%20theorem

AdvancedHelp

(0.002 seconds)

21—30 of 503 matching pages

21: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • B. J. King and A. L. Van Buren (1973) A general addition theorem for spheroidal wave functions. SIAM J. Math. Anal. 4 (1), pp. 149–160.
  • D. E. Knuth and T. J. Buckholtz (1967) Computation of tangent, Euler, and Bernoulli numbers. Math. Comp. 21 (100), pp. 663–688.
  • T. H. Koornwinder (1975a) A new proof of a Paley-Wiener type theorem for the Jacobi transform. Ark. Mat. 13, pp. 145–159.
  • 22: 24.20 Tables
    §24.20 Tables
    Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. …
    23: 12.12 Integrals
    12.12.1 0 e 1 4 t 2 t μ 1 U ( a , t ) d t = π 2 1 2 ( μ + a + 1 2 ) Γ ( μ ) Γ ( 1 2 ( μ + a + 3 2 ) ) , μ > 0 ,
    12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
    12.12.3 0 e 1 4 t 2 t a 1 2 ( x 2 + t 2 ) 1 U ( a , t ) d t = π / 2 Γ ( 1 2 a ) x a 3 2 e 1 4 x 2 U ( a , x ) , a < 1 2 , x > 0 .
    12.12.4 ( U ( a , z ) ) 2 + ( U ¯ ( a , z ) ) 2 = 2 3 2 π Γ ( 1 2 a ) 0 e 2 a t + 1 2 z 2 tanh t sinh ( 2 t ) d t , a < 1 2 .
    For compendia of integrals see Erdélyi et al. (1953b, v. 2, pp. 121–122), Erdélyi et al. (1954a, b, v. 1, pp. 60–61, 115, 210–211, and 336; v. 2, pp. 76–80, 115, 151, 171, and 395–398), Gradshteyn and Ryzhik (2000, §7.7), Magnus et al. (1966, pp. 330–331), Marichev (1983, pp. 190–191), Oberhettinger (1974, pp. 144–145), Oberhettinger (1990, pp. 106–108 and 192), Oberhettinger and Badii (1973, pp. 181–185), Prudnikov et al. (1986b, pp. 36–37, 155–168, 243–246, 289–290, 327–328, 419–420, and 619), Prudnikov et al. (1992a, §3.11), and Prudnikov et al. (1992b, §3.11). …
    24: 5.5 Functional Relations
    5.5.1 Γ ( z + 1 ) = z Γ ( z ) ,
    5.5.3 Γ ( z ) Γ ( 1 z ) = π / sin ( π z ) , z 0 , ± 1 , ,
    5.5.5 Γ ( 2 z ) = π 1 / 2 2 2 z 1 Γ ( z ) Γ ( z + 1 2 ) .
    §5.5(iv) Bohr–Mollerup Theorem
    If a positive function f ( x ) on ( 0 , ) satisfies f ( x + 1 ) = x f ( x ) , f ( 1 ) = 1 , and ln f ( x ) is convex (see §1.4(viii)), then f ( x ) = Γ ( x ) .
    25: 27.4 Euler Products and Dirichlet Series
    §27.4 Euler Products and Dirichlet Series
    The fundamental theorem of arithmetic is linked to analysis through the concept of the Euler product. …In this case the infinite product on the right (extended over all primes p ) is also absolutely convergent and is called the Euler product of the series. If f ( n ) is completely multiplicative, then each factor in the product is a geometric series and the Euler product becomes … Euler products are used to find series that generate many functions of multiplicative number theory. …
    26: 27.8 Dirichlet Characters
    For any character χ ( mod k ) , χ ( n ) 0 if and only if ( n , k ) = 1 , in which case the EulerFermat theorem (27.2.8) implies ( χ ( n ) ) ϕ ( k ) = 1 . There are exactly ϕ ( k ) different characters (mod k ), which can be labeled as χ 1 , , χ ϕ ( k ) . …
    27.8.6 r = 1 ϕ ( k ) χ r ( m ) χ ¯ r ( n ) = { ϕ ( k ) , m n ( mod k ) , 0 , otherwise .
    27: 24.3 Graphs
    See accompanying text
    Figure 24.3.2: Euler polynomials E n ( x ) , n = 2 , 3 , , 6 . Magnify
    28: 5.11 Asymptotic Expansions
    The scaled gamma function Γ ( z ) is defined in (5.11.3) and its main property is Γ ( z ) 1 as z in the sector | ph z | π δ . Wrench (1968) gives exact values of g k up to g 20 . …
    5.11.12 Γ ( z + a ) Γ ( z + b ) z a b ,
    5.11.13 Γ ( z + a ) Γ ( z + b ) z a b k = 0 G k ( a , b ) z k ,
    5.11.19 Γ ( z + a ) Γ ( z + b ) Γ ( z + c ) k = 0 ( 1 ) k ( c a ) k ( c b ) k k ! Γ ( a + b c + z k ) .
    29: 8.15 Sums
    8.15.1 γ ( a , λ x ) = λ a k = 0 γ ( a + k , x ) ( 1 λ ) k k ! .
    8.15.2 a k = 1 ( e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) + e 2 π i k ( z + h ) ( 2 π i k ) a + 1 Γ ( a , 2 π i k z ) ) = ζ ( a , z + h ) + z a + 1 a + 1 + ( h 1 2 ) z a , h [ 0 , 1 ] .
    30: 10.44 Sums
    §10.44(i) Multiplication Theorem
    §10.44(ii) Addition Theorems
    Neumann’s Addition Theorem
    Graf’s and Gegenbauer’s Addition Theorems
    where γ is Euler’s constant and ψ = Γ / Γ 5.2). …