About the Project

Dirac%20delta

AdvancedHelp

(0.002 seconds)

1—10 of 288 matching pages

1: 1.17 Integral and Series Representations of the Dirac Delta
§1.17 Integral and Series Representations of the Dirac Delta
β–Ί
§1.17(i) Delta Sequences
β–Ί
Sine and Cosine Functions
β–Ί
Coulomb Functions (§33.14(iv))
β–Ί
Airy Functions (§9.2)
2: 25.20 Approximations
β–Ί
  • Cody et al. (1971) gives rational approximations for ΞΆ ⁑ ( s ) in the form of quotients of polynomials or quotients of Chebyshev series. The ranges covered are 0.5 s 5 , 5 s 11 , 11 s 25 , 25 s 55 . Precision is varied, with a maximum of 20S.

  • β–Ί
  • Morris (1979) gives rational approximations for Li 2 ⁑ ( x ) 25.12(i)) for 0.5 x 1 . Precision is varied with a maximum of 24S.

  • β–Ί
  • Antia (1993) gives minimax rational approximations for Ξ“ ⁑ ( s + 1 ) ⁒ F s ⁑ ( x ) , where F s ⁑ ( x ) is the Fermi–Dirac integral (25.12.14), for the intervals < x 2 and 2 x < , with s = 1 2 , 1 2 , 3 2 , 5 2 . For each s there are three sets of approximations, with relative maximum errors 10 4 , 10 8 , 10 12 .

  • 3: 25.12 Polylogarithms
    β–Ί
    §25.12(iii) Fermi–Dirac and Bose–Einstein Integrals
    β–ΊThe Fermi–Dirac and Bose–Einstein integrals are defined by β–Ί
    25.12.14 F s ⁑ ( x ) = 1 Ξ“ ⁑ ( s + 1 ) ⁒ 0 t s e t x + 1 ⁒ d t , s > 1 ,
    β–ΊIn terms of polylogarithms … β–ΊFor a uniform asymptotic approximation for F s ⁑ ( x ) see Temme and Olde Daalhuis (1990).
    4: 1.16 Distributions
    β–Ί
    §1.16(iii) Dirac Delta Distribution
    β–ΊThe Dirac delta distribution is singular. … β–ΊWe use the notation of the previous subsection and take n = 1 and u = Ξ΄ in (1.16.35). … β–ΊSince 2 ⁒ Ο€ ⁒ β„± ⁑ ( Ξ΄ ) = 1 , we have …Since the quantity on the extreme right of (1.16.41) is equal to 2 ⁒ Ο€ ⁒ ⟨ Ξ΄ , Ο• ⟩ , as distributions, the result in this equation can be stated as …
    5: 33.1 Special Notation
    β–Ί β–Ίβ–Ίβ–Ί
    k , β„“ nonnegative integers.
    Ξ΄ ⁑ ( x ) Dirac delta; see §1.17.
    6: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    β–Ίof the Dirac delta distribution. … β–ΊApplying the representation (1.17.13), now symmetrized as in (1.17.14), as 1 x ⁒ Ξ΄ ⁑ ( x y ) = 1 x ⁒ y ⁒ Ξ΄ ⁑ ( x y ) , … β–ΊThese latter results also correspond to use of the Ξ΄ ⁑ ( x y ) as defined in (1.17.12_1) and (1.17.12_2). … β–ΊThus, and this is a case where q ⁒ ( x ) is not continuous, if q ⁒ ( x ) = Ξ± ⁒ Ξ΄ ⁑ ( x a ) , Ξ± > 0 , there will be an L 2 eigenfunction localized in the vicinity of x = a , with a negative eigenvalue, thus disjoint from the continuous spectrum on [ 0 , ) . … β–ΊFor fixed angular momentum β„“ the appropriate self-adjoint extension of the above operator may have both a discrete spectrum of negative eigenvalues Ξ» n , n = 0 , 1 , , N 1 , with corresponding L 2 ⁑ ( [ 0 , ) , r 2 ⁒ d r ) eigenfunctions Ο• n ⁒ ( r ) , and also a continuous spectrum Ξ» [ 0 , ) , with Dirac-delta normalized eigenfunctions Ο• Ξ» ⁒ ( r ) , also with measure r 2 ⁒ d r . …
    7: 33.14 Definitions and Basic Properties
    β–ΊThe function s ⁑ ( Ο΅ , β„“ ; r ) has the following properties: β–Ί
    33.14.13 0 s ⁑ ( Ο΅ 1 , β„“ ; r ) ⁒ s ⁑ ( Ο΅ 2 , β„“ ; r ) ⁒ d r = Ξ΄ ⁑ ( Ο΅ 1 Ο΅ 2 ) , Ο΅ 1 , Ο΅ 2 > 0 ,
    β–Ίwhere the right-hand side is the Dirac delta1.17). … β–Ί
    33.14.15 0 Ο• m , β„“ ⁑ ( r ) ⁒ Ο• n , β„“ ⁑ ( r ) ⁒ d r = Ξ΄ m , n .
    8: 25.19 Tables
    β–Ί
  • Morris (1979) tabulates Li 2 ⁑ ( x ) 25.12(i)) for ± x = 0.02 ⁒ ( .02 ) ⁒ 1 ⁒ ( .1 ) ⁒ 6 to 30D.

  • β–Ί
  • Cloutman (1989) tabulates Ξ“ ⁑ ( s + 1 ) ⁒ F s ⁑ ( x ) , where F s ⁑ ( x ) is the Fermi–Dirac integral (25.12.14), for s = 1 2 , 1 2 , 3 2 , 5 2 , x = 5 ⁒ ( .05 ) ⁒ 25 , to 12S.

  • 9: Bibliography P
    β–Ί
  • S. Paszkowski (1988) Evaluation of Fermi-Dirac Integral. In Nonlinear Numerical Methods and Rational Approximation (Wilrijk, 1987), A. Cuyt (Ed.), Mathematics and Its Applications, Vol. 43, pp. 435–444.
  • β–Ί
  • S. Paszkowski (1991) Evaluation of the Fermi-Dirac integral of half-integer order. Zastos. Mat. 21 (2), pp. 289–301.
  • β–Ί
  • B. Pichon (1989) Numerical calculation of the generalized Fermi-Dirac integrals. Comput. Phys. Comm. 55 (2), pp. 127–136.
  • β–Ί
  • R. Piessens (1982) Automatic computation of Bessel function integrals. Comput. Phys. Comm. 25 (3), pp. 289–295.
  • 10: 18.1 Notation
    β–Ί β–Ίβ–Ίβ–Ί
    x , y , t real variables.
    δ ⁑ ( x a ) Dirac delta1.17).
    β–Ί
  • Racah: R n ⁑ ( x ; Ξ± , Ξ² , Ξ³ , Ξ΄ ) .

  • β–Ί
  • Dual Hahn: R n ⁑ ( x ; Ξ³ , Ξ΄ , N ) .

  • β–Ί
  • q -Racah: R n ⁑ ( x ; Ξ± , Ξ² , Ξ³ , Ξ΄ | q ) .

  • β–ΊIn Koekoek et al. (2010) Ξ΄ x denotes the operator i ⁒ Ξ΄ x .