About the Project

Chebyshev polynomials

AdvancedHelp

(0.006 seconds)

11—20 of 47 matching pages

11: 16.26 Approximations
For discussions of the approximation of generalized hypergeometric functions and the Meijer G -function in terms of polynomials, rational functions, and Chebyshev polynomials see Luke (1975, §§5.12 - 5.13) and Luke (1977b, Chapters 1 and 9).
12: 18.4 Graphics
See accompanying text
Figure 18.4.3: Chebyshev polynomials T n ( x ) , n = 1 , 2 , 3 , 4 , 5 . Magnify
13: 18.13 Continued Fractions
Chebyshev
T n ( x ) is the denominator of the n th approximant to: …and U n ( x ) is the denominator of the n th approximant to: …
14: 18.18 Sums
Chebyshev
18.18.21 T m ( x ) T n ( x ) = 1 2 ( T m + n ( x ) + T m n ( x ) ) .
18.18.32 2 = 0 n T 2 ( x ) = 1 + U 2 n ( x ) ,
18.18.33 2 = 0 n T 2 + 1 ( x ) = U 2 n + 1 ( x ) ,
18.18.34 2 ( 1 x 2 ) = 0 n U 2 ( x ) = 1 T 2 n + 2 ( x ) ,
15: 18.12 Generating Functions
Chebyshev
18.12.7 1 z 2 1 2 x z + z 2 = 1 + 2 n = 1 T n ( x ) z n , | z | < 1 .
18.12.8 1 x z 1 2 x z + z 2 = n = 0 T n ( x ) z n , | z | < 1 .
18.12.9 ln ( 1 2 x z + z 2 ) = 2 n = 1 T n ( x ) n z n , | z | < 1 .
18.12.10 1 1 2 x z + z 2 = n = 0 U n ( x ) z n , | z | < 1 .
16: 3.5 Quadrature
For the latter a = 1 , b = 1 , and the nodes x k are the extrema of the Chebyshev polynomial T n ( x ) 3.11(ii) and §18.3). …
Table 3.5.17_5: Recurrence coefficients in (3.5.30) and (3.5.30_5) for monic versions p n ( x ) and orthonormal versions q n ( x ) of the classical orthogonal polynomials.
p n ( x ) q n ( x ) α n β n h 0
1 k n T n ( x ) 1 h n T n ( x ) 0 1 4 ( 1 + δ n , 1 ) π
1 k n U n ( x ) 1 h n U n ( x ) 0 1 4 1 2 π
1 k n V n ( x ) 1 h n V n ( x ) 1 2 δ n , 0 1 4 π
1 k n T n ( x ) 1 h n T n ( x ) 1 2 1 16 ( 1 + δ n , 1 ) π
17: 18.17 Integrals
Chebyshev
18.17.45 ( n + 1 2 ) ( 1 + x ) 1 2 1 x ( x t ) 1 2 P n ( t ) d t = T n ( x ) + T n + 1 ( x ) = ( 1 + x ) V n ( x ) ,
18.17.46 ( n + 1 2 ) ( 1 x ) 1 2 x 1 ( t x ) 1 2 P n ( t ) d t = T n ( x ) T n + 1 ( x ) = ( 1 x ) W n ( x ) .
18: 18.10 Integral Representations
Table 18.10.1: Classical OP’s: contour integral representations (18.10.8).
p n ( x ) g 0 ( x ) g 1 ( z , x ) g 2 ( z , x ) c Conditions
T n ( x ) 1 z 1 1 x z 1 2 x z + z 2 0
U n ( x ) 1 z 1 ( 1 2 x z + z 2 ) 1 0
19: 7.6 Series Expansions
7.6.9 erf ( a z ) = 2 z π e ( 1 2 a 2 ) z 2 n = 0 T 2 n + 1 ( a ) 𝗂 n ( 1 ) ( 1 2 z 2 ) , 1 a 1 .
20: 18.38 Mathematical Applications
§18.38(i) Classical OP’s: Numerical Analysis
Approximation Theory
The monic Chebyshev polynomial 2 1 n T n ( x ) , n 1 , enjoys the ‘minimax’ property on the interval [ 1 , 1 ] , that is, | 2 1 n T n ( x ) | has the least maximum value among all monic polynomials of degree n . …
Differential Equations: Spectral Methods
Linear ordinary differential equations can be solved directly in series of Chebyshev polynomials (or other OP’s) by a method originated by Clenshaw (1957). …