About the Project

Cauchy–Schwarz inequalities for sums and integrals

AdvancedHelp

(0.002 seconds)

11—20 of 196 matching pages

11: 19.17 Graphics
See accompanying text
Figure 19.17.6: Cauchy principal value of R J ( x , y , 1 , 0.5 ) for 0 x 1 , y = 0 ,  0.1 ,  0.5 ,  1 . … Magnify
See accompanying text
Figure 19.17.7: Cauchy principal value of R J ( 0.5 , y , 1 , p ) for y = 0 ,  0.01 ,  0.05 ,  0.2 ,  1 , 1 p < 0 . … Magnify
12: 19.2 Definitions
The integral for E ( ϕ , k ) is well defined if k 2 = sin 2 ϕ = 1 , and the Cauchy principal value (§1.4(v)) of Π ( ϕ , α 2 , k ) is taken if 1 α 2 sin 2 ϕ vanishes at an interior point of the integration path. … If < p < 0 , then the integral in (19.2.11) is a Cauchy principal value. … Formulas involving Π ( ϕ , α 2 , k ) that are customarily different for circular cases, ordinary hyperbolic cases, and (hyperbolic) Cauchy principal values, are united in a single formula by using R C ( x , y ) . …
13: Bibliography H
  • P. Henrici (1986) Applied and Computational Complex Analysis. Vol. 3: Discrete Fourier Analysis—Cauchy Integrals—Construction of Conformal Maps—Univalent Functions. Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons Inc.], New York.
  • 14: 19.3 Graphics
    See accompanying text
    Figure 19.3.2: R C ( x , 1 ) and the Cauchy principal value of R C ( x , 1 ) for 0 x 5 . … Magnify
    See accompanying text
    Figure 19.3.6: Π ( ϕ , 2 , k ) as a function of k 2 and sin 2 ϕ for 1 k 2 3 , 0 sin 2 ϕ < 1 . …If sin 2 ϕ = 1 ( > k 2 ), then the function reduces to Π ( 2 , k ) with Cauchy principal value K ( k ) Π ( 1 2 k 2 , k ) , which tends to as k 2 1 . …If sin 2 ϕ = 1 / k 2 ( < 1 ), then by (19.7.4) it reduces to Π ( 2 / k 2 , 1 / k ) / k , k 2 2 , with Cauchy principal value ( K ( 1 / k ) Π ( 1 2 , 1 / k ) ) / k , 1 < k 2 < 2 , by (19.6.5). … Magnify 3D Help
    15: 19.22 Quadratic Transformations
    19.22.9 4 π R G ( 0 , a 0 2 , g 0 2 ) = 1 M ( a 0 , g 0 ) ( a 0 2 n = 0 2 n 1 c n 2 ) = 1 M ( a 0 , g 0 ) ( a 1 2 n = 2 2 n 1 c n 2 ) ,
    19.22.10 R D ( 0 , g 0 2 , a 0 2 ) = 3 π 4 M ( a 0 , g 0 ) a 0 2 n = 0 Q n ,
    19.22.12 R J ( 0 , g 0 2 , a 0 2 , p 0 2 ) = 3 π 4 M ( a 0 , g 0 ) p 0 2 n = 0 Q n ,
    If the last variable of R J is negative, then the Cauchy principal value is
    19.22.14 R J ( 0 , g 0 2 , a 0 2 , q 0 2 ) = 3 π 4 M ( a 0 , g 0 ) ( q 0 2 + a 0 2 ) ( 2 + a 0 2 g 0 2 q 0 2 + g 0 2 n = 0 Q n ) ,
    16: 1.10 Functions of a Complex Variable
    1.10.8 1 2 π i C f ( z ) d z = sum of the residues of  f ( z )  within  C .
    1.10.10 1 2 π i C z f ( z ) f ( z ) d z = (sum of locations of zeros) (sum of locations of poles) ,
    17: 19.36 Methods of Computation
    All cases of R F , R C , R J , and R D are computed by essentially the same procedure (after transforming Cauchy principal values by means of (19.20.14) and (19.2.20)). …
    19.36.13 2 R G ( t 0 2 , t 0 2 + θ c 0 2 , t 0 2 + θ a 0 2 ) = ( t 0 2 + θ m = 0 2 m 1 c m 2 ) R C ( T 2 + θ M 2 , T 2 ) + h 0 + m = 1 2 m ( h m h m 1 ) .
    18: 1.14 Integral Transforms
    1.14.3 1 2 ( f ( u + ) + f ( u ) ) = 1 2 π F ( x ) e i x u d x ,
    where the last integral denotes the Cauchy principal value (1.4.25). …
    1.14.41 ( f ) ( x ) = f ( x ) = 1 π f ( t ) t x d t ,
    1.14.44 f ( x ) = 1 π f ( u ) u x d u .
    19: 19.24 Inequalities
    §19.24(i) Complete Integrals
    §19.24(ii) Incomplete Integrals
    Inequalities for R C ( x , y ) and R D ( x , y , z ) are included as special cases (see (19.16.6) and (19.16.5)). Other inequalities for R F ( x , y , z ) are given in Carlson (1970). …
    20: 6.8 Inequalities
    §6.8 Inequalities