About the Project

Bose%E2%80%93Einstein%20integral

AdvancedHelp

(0.004 seconds)

11—20 of 482 matching pages

11: Bernard Deconinck
He has worked on integrable systems, algorithms for computations with Riemann surfaces, Bose-Einstein condensates, and methods to investigate the stability of solutions of nonlinear wave equations. …
12: 25.21 Software
§25.21(vi) Clausen’s Integral
§25.21(vii) Fermi–Dirac and BoseEinstein Integrals
13: William P. Reinhardt
He has recently carried out research on non-linear dynamics of BoseEinstein condensates that served to motivate his interest in elliptic functions. …
  • In November 2015, Reinhardt was named Senior Associate Editor of the DLMF and Associate Editor for Chapters 20, 22, and 23.
    14: 7.18 Repeated Integrals of the Complementary Error Function
    §7.18 Repeated Integrals of the Complementary Error Function
    §7.18(i) Definition
    §7.18(iii) Properties
    Hermite Polynomials
    15: 19.16 Definitions
    §19.16(i) Symmetric Integrals
    All other elliptic cases are integrals of the second kind. …(Note that R C ( x , y ) is not an elliptic integral.) … Each of the four complete integrals (19.16.20)–(19.16.23) can be integrated to recover the incomplete integral: …
    16: Bibliography D
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • R. B. Dingle (1957a) The Bose-Einstein integrals p ( η ) = ( p ! ) 1 0 ϵ p ( e ϵ η 1 ) 1 𝑑 ϵ . Appl. Sci. Res. B. 6, pp. 240–244.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • T. M. Dunster (1997) Error analysis in a uniform asymptotic expansion for the generalised exponential integral. J. Comput. Appl. Math. 80 (1), pp. 127–161.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 17: Bibliography J
  • A. J. E. M. Janssen (2021) Bounds on Dawson’s integral occurring in the analysis of a line distribution network for electric vehicles. Eurandom Preprint Series Technical Report 14, Eurandom, Eindhoven, The Netherlands.
  • D. K. Jefferson (1961) Algorithm 73: Incomplete elliptic integrals. Comm. ACM 4 (12), pp. 543.
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • D. S. Jones (1972) Asymptotic behavior of integrals. SIAM Rev. 14 (2), pp. 286–317.
  • B. R. Judd (1976) Modifications of Coulombic interactions by polarizable atoms. Math. Proc. Cambridge Philos. Soc. 80 (3), pp. 535–539.
  • 18: 36.2 Catastrophes and Canonical Integrals
    §36.2 Catastrophes and Canonical Integrals
    §36.2(i) Definitions
    Canonical Integrals
    §36.2(iii) Symmetries
    19: 19.2 Definitions
    §19.2(i) General Elliptic Integrals
    is called an elliptic integral. …
    §19.2(ii) Legendre’s Integrals
    §19.2(iii) Bulirsch’s Integrals
    §19.2(iv) A Related Function: R C ( x , y )
    20: Bibliography B
  • G. Backenstoss (1970) Pionic atoms. Annual Review of Nuclear and Particle Science 20, pp. 467–508.
  • K. L. Bell and N. S. Scott (1980) Coulomb functions (negative energies). Comput. Phys. Comm. 20 (3), pp. 447–458.
  • W. G. Bickley (1935) Some solutions of the problem of forced convection. Philos. Mag. Series 7 20, pp. 322–343.
  • I. Bloch, M. H. Hull, A. A. Broyles, W. G. Bouricius, B. E. Freeman, and G. Breit (1950) Methods of calculation of radial wave functions and new tables of Coulomb functions. Physical Rev. (2) 80, pp. 553–560.
  • J. C. Bronski, L. D. Carr, B. Deconinck, J. N. Kutz, and K. Promislow (2001) Stability of repulsive Bose-Einstein condensates in a periodic potential. Phys. Rev. E (3) 63 (036612), pp. 1–11.