About the Project

Bessel integral

AdvancedHelp

(0.006 seconds)

21—30 of 95 matching pages

21: 11.5 Integral Representations
11.5.7 I ν ( x ) 𝐋 ν ( x ) = 2 ( 1 2 x ) ν π Γ ( ν + 1 2 ) 0 ( 1 + t 2 ) ν 1 2 sin ( x t ) d t , x > 0 , ν < 1 2 .
22: 13.4 Integral Representations
13.4.2 𝐌 ( a , b , z ) = 1 Γ ( b c ) 0 1 𝐌 ( a , c , z t ) t c 1 ( 1 t ) b c 1 d t , b > c > 0 ,
13.4.3 𝐌 ( a , b , z ) = z 1 2 1 2 b Γ ( a ) 0 e t t a 1 2 b 1 2 J b 1 ( 2 z t ) d t , a > 0 .
13.4.6 U ( a , b , z ) = ( 1 ) n z 1 b n Γ ( 1 + a b ) 0 𝐌 ( b a , b , t ) e t t b + n 1 t + z d t , | ph z | < π , n = 0 , 1 , 2 , , b < n < 1 + ( a b ) ,
13.4.7 U ( a , b , z ) = 2 z 1 2 1 2 b Γ ( a ) Γ ( a b + 1 ) 0 e t t a 1 2 b 1 2 K b 1 ( 2 z t ) d t , a > max ( b 1 , 0 ) ,
23: 8.21 Generalized Sine and Cosine Integrals
Spherical-Bessel-Function Expansions
8.21.16 Si ( a , z ) = z a k = 0 ( 2 k + 3 2 ) ( 1 1 2 a ) k ( 1 2 + 1 2 a ) k + 1 𝗃 2 k + 1 ( z ) , a 1 , 3 , 5 , ,
8.21.17 Ci ( a , z ) = z a k = 0 ( 2 k + 1 2 ) ( 1 2 1 2 a ) k ( 1 2 a ) k + 1 𝗃 2 k ( z ) , a 0 , 2 , 4 , .
24: 10.75 Tables
§10.75(iv) Integrals of Bessel Functions
  • Abramowitz and Stegun (1964, Chapter 11) tabulates 0 x J 0 ( t ) d t , 0 x Y 0 ( t ) d t , x = 0 ( .1 ) 10 , 10D; 0 x t 1 ( 1 J 0 ( t ) ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 5 , 8D.

  • Zhang and Jin (1996, p. 270) tabulates 0 x J 0 ( t ) d t , 0 x t 1 ( 1 J 0 ( t ) ) d t , 0 x Y 0 ( t ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 1 ( .5 ) 20 , 8D.

  • §10.75(v) Modified Bessel Functions and their Derivatives
    §10.75(vii) Integrals of Modified Bessel Functions
    25: 10.60 Sums
    10.60.11 n = 0 𝗃 n 2 ( z ) = Si ( 2 z ) 2 z .
    26: Bibliography O
  • S. Okui (1974) Complete elliptic integrals resulting from infinite integrals of Bessel functions. J. Res. Nat. Bur. Standards Sect. B 78B (3), pp. 113–135.
  • S. Okui (1975) Complete elliptic integrals resulting from infinite integrals of Bessel functions. II. J. Res. Nat. Bur. Standards Sect. B 79B (3-4), pp. 137–170.
  • 27: 9.11 Products
    §9.11(iii) Integral Representations
    9.11.3 Ai 2 ( x ) = 1 4 π 3 0 J 0 ( 1 12 t 3 + x t ) t d t , x 0 ,
    28: Bibliography L
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • S. Lewanowicz (1991) Evaluation of Bessel function integrals with algebraic singularities. J. Comput. Appl. Math. 37 (1-3), pp. 101–112.
  • S. K. Lucas and H. A. Stone (1995) Evaluating infinite integrals involving Bessel functions of arbitrary order. J. Comput. Appl. Math. 64 (3), pp. 217–231.
  • S. K. Lucas (1995) Evaluating infinite integrals involving products of Bessel functions of arbitrary order. J. Comput. Appl. Math. 64 (3), pp. 269–282.
  • Y. L. Luke (1962) Integrals of Bessel Functions. McGraw-Hill Book Co., Inc., New York.
  • 29: 1.17 Integral and Series Representations of the Dirac Delta
    Bessel Functions and Spherical Bessel Functions (§§10.2(ii), 10.47(ii))
    1.17.13 δ ( x a ) = x 0 t J ν ( x t ) J ν ( a t ) d t , ν > 1 , x > 0 , a > 0 ,
    1.17.14 δ ( x a ) = 2 x a π 0 t 2 𝗃 ( x t ) 𝗃 ( a t ) d t , x > 0 , a > 0 .
    30: 10.23 Sums
    10.23.19 a m = 2 ( J ν + 1 ( j ν , m ) ) 2 0 1 t f ( t ) J ν ( j ν , m t ) d t , ν 1 2 ,