About the Project

Bessel inequality

AdvancedHelp

(0.002 seconds)

11—20 of 27 matching pages

11: 10.21 Zeros
§10.21(v) Inequalities
12: Bibliography M
  • R. C. McCann (1977) Inequalities for the zeros of Bessel functions. SIAM J. Math. Anal. 8 (1), pp. 166–170.
  • 13: Errata
  • Chapter 1 Additions

    The following additions were made in Chapter 1:

  • 14: 13.22 Zeros
    13.22.1 ϕ r = j 2 μ , r 2 4 κ + j 2 μ , r O ( κ 3 2 ) ,
    where j 2 μ , r is the r th positive zero of the Bessel function J 2 μ ( x ) 10.21(i)). …
    15: 13.9 Zeros
    When a < 0 and b > 0 let ϕ r , r = 1 , 2 , 3 , , be the positive zeros of M ( a , b , x ) arranged in increasing order of magnitude, and let j b 1 , r be the r th positive zero of the Bessel function J b 1 ( x ) 10.21(i)). …
    13.9.8 ϕ r = j b 1 , r 2 2 b 4 a ( 1 + 2 b ( b 2 ) + j b 1 , r 2 3 ( 2 b 4 a ) 2 ) + O ( 1 a 5 ) ,
    Inequalities for ϕ r are given in Gatteschi (1990), and identities involving infinite series of all of the complex zeros of M ( a , b , x ) are given in Ahmed and Muldoon (1980). … Inequalities for the zeros of U ( a , b , x ) are given in Gatteschi (1990). …
    16: Bibliography E
  • Á. Elbert (2001) Some recent results on the zeros of Bessel functions and orthogonal polynomials. J. Comput. Appl. Math. 133 (1-2), pp. 65–83.
  • Á. Elbert and A. Laforgia (1994) Interlacing properties of the zeros of Bessel functions. Atti Sem. Mat. Fis. Univ. Modena XLII (2), pp. 525–529.
  • Á. Elbert and A. Laforgia (1997) An upper bound for the zeros of the derivative of Bessel functions. Rend. Circ. Mat. Palermo (2) 46 (1), pp. 123–130.
  • W. D. Evans, W. N. Everitt, K. H. Kwon, and L. L. Littlejohn (1993) Real orthogonalizing weights for Bessel polynomials. J. Comput. Appl. Math. 49 (1-3), pp. 51–57.
  • W. N. Everitt and D. S. Jones (1977) On an integral inequality. Proc. Roy. Soc. London Ser. A 357, pp. 271–288.
  • 17: Bibliography D
  • B. Davies (1973) Complex zeros of linear combinations of spherical Bessel functions and their derivatives. SIAM J. Math. Anal. 4 (1), pp. 128–133.
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981a) On the zeros of generalized Bessel polynomials. I. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 1–13.
  • M. G. de Bruin, E. B. Saff, and R. S. Varga (1981b) On the zeros of generalized Bessel polynomials. II. Nederl. Akad. Wetensch. Indag. Math. 84 (1), pp. 14–25.
  • G. Delic (1979b) Chebyshev series for the spherical Bessel function j l ( r ) . Comput. Phys. Comm. 18 (1), pp. 73–86.
  • K. Driver and K. Jordaan (2013) Inequalities for extreme zeros of some classical orthogonal and q -orthogonal polynomials. Math. Model. Nat. Phenom. 8 (1), pp. 48–59.
  • 18: Bibliography K
  • P. L. Kapitsa (1951b) The computation of the sums of negative even powers of roots of Bessel functions. Doklady Akad. Nauk SSSR (N.S.) 77, pp. 561–564.
  • M. K. Kerimov and S. L. Skorokhodov (1984a) Calculation of modified Bessel functions in a complex domain. Zh. Vychisl. Mat. i Mat. Fiz. 24 (5), pp. 650–664.
  • D. Kershaw (1983) Some extensions of W. Gautschi’s inequalities for the gamma function. Math. Comp. 41 (164), pp. 607–611.
  • T. Koornwinder, A. Kostenko, and G. Teschl (2018) Jacobi polynomials, Bernstein-type inequalities and dispersion estimates for the discrete Laguerre operator. Adv. Math. 333, pp. 796–821.
  • B. G. Korenev (2002) Bessel Functions and their Applications. Analytical Methods and Special Functions, Vol. 8, Taylor & Francis Ltd., London-New York.
  • 19: Bibliography W
  • E. J. Weniger and J. Čížek (1990) Rational approximations for the modified Bessel function of the second kind. Comput. Phys. Comm. 59 (3), pp. 471–493.
  • A. D. Wheelon (1968) Tables of Summable Series and Integrals Involving Bessel Functions. Holden-Day, San Francisco, CA.
  • M. E. Wojcicki (1961) Algorithm 44: Bessel functions computed recursively. Comm. ACM 4 (4), pp. 177–178.
  • E. M. Wright (1935) The asymptotic expansion of the generalized Bessel function. Proc. London Math. Soc. (2) 38, pp. 257–270.
  • C. Y. Wu (1982) A series of inequalities for Mills’s ratio. Acta Math. Sinica 25 (6), pp. 660–670.
  • 20: Bibliography
  • H. Alzer and S. Qiu (2004) Monotonicity theorems and inequalities for the complete elliptic integrals. J. Comput. Appl. Math. 172 (2), pp. 289–312.
  • H. Alzer (1997a) A harmonic mean inequality for the gamma function. J. Comput. Appl. Math. 87 (2), pp. 195–198.
  • H. Alzer (1997b) On some inequalities for the incomplete gamma function. Math. Comp. 66 (218), pp. 771–778.
  • H. Alzer (2008) Gamma function inequalities. Numer. Algorithms 49 (1-4), pp. 53–84.
  • G. D. Anderson and M. K. Vamanamurthy (1985) Inequalities for elliptic integrals. Publ. Inst. Math. (Beograd) (N.S.) 37(51), pp. 61–63.