About the Project

Bessel functions and modified Bessel functions

AdvancedHelp

(0.022 seconds)

11—20 of 118 matching pages

11: 10.26 Graphics
§10.26(i) Real Order and Variable
See accompanying text
Figure 10.26.7: I ~ 1 / 2 ( x ) , K ~ 1 / 2 ( x ) , 0.01 x 3 . Magnify
See accompanying text
Figure 10.26.8: I ~ 1 ( x ) , K ~ 1 ( x ) , 0.01 x 3 . Magnify
See accompanying text
Figure 10.26.9: I ~ 5 ( x ) , K ~ 5 ( x ) , 0.01 x 3 . Magnify
See accompanying text
Figure 10.26.10: K ~ 5 ( x ) , 0.01 x 3 . Magnify
12: 10.33 Continued Fractions
§10.33 Continued Fractions
10.33.1 I ν ( z ) I ν 1 ( z ) = 1 2 ν z 1 + 1 2 ( ν + 1 ) z 1 + 1 2 ( ν + 2 ) z 1 + , z 0 ,
10.33.2 I ν ( z ) I ν 1 ( z ) = 1 2 z / ν 1 + 1 4 z 2 / ( ν ( ν + 1 ) ) 1 + 1 4 z 2 / ( ( ν + 1 ) ( ν + 2 ) ) 1 + , ν 0 , 1 , 2 , .
13: 10.37 Inequalities; Monotonicity
§10.37 Inequalities; Monotonicity
10.37.1 | K ν ( z ) | < | K μ ( z ) | .
14: 10.35 Generating Function and Associated Series
§10.35 Generating Function and Associated Series
10.35.1 e 1 2 z ( t + t 1 ) = m = t m I m ( z ) .
10.35.2 e z cos θ = I 0 ( z ) + 2 k = 1 I k ( z ) cos ( k θ ) ,
10.35.4 1 = I 0 ( z ) 2 I 2 ( z ) + 2 I 4 ( z ) 2 I 6 ( z ) + ,
10.35.5 e ± z = I 0 ( z ) ± 2 I 1 ( z ) + 2 I 2 ( z ) ± 2 I 3 ( z ) + ,
15: 10.66 Expansions in Series of Bessel Functions
10.66.1 ber ν x + i bei ν x = k = 0 e ( 3 ν + k ) π i / 4 x k J ν + k ( x ) 2 k / 2 k ! = k = 0 e ( 3 ν + 3 k ) π i / 4 x k I ν + k ( x ) 2 k / 2 k ! .
16: 10.25 Definitions
Its solutions are called modified Bessel functions or Bessel functions of imaginary argument.
§10.25(ii) Standard Solutions
Branch Conventions
Corresponding to the symbol 𝒞 ν introduced in §10.2(ii), we sometimes use 𝒵 ν ( z ) to denote I ν ( z ) , e ν π i K ν ( z ) , or any nontrivial linear combination of these functions, the coefficients in which are independent of z and ν . …
17: 10.45 Functions of Imaginary Order
§10.45 Functions of Imaginary Order
10.45.2 I ~ ν ( x ) = ( I i ν ( x ) ) , K ~ ν ( x ) = K i ν ( x ) .
18: 10.34 Analytic Continuation
§10.34 Analytic Continuation
10.34.1 I ν ( z e m π i ) = e m ν π i I ν ( z ) ,
10.34.2 K ν ( z e m π i ) = e m ν π i K ν ( z ) π i sin ( m ν π ) csc ( ν π ) I ν ( z ) .
10.34.3 I ν ( z e m π i ) = ( i / π ) ( ± e m ν π i K ν ( z e ± π i ) e ( m 1 ) ν π i K ν ( z ) ) ,
10.34.5 K n ( z e m π i ) = ( 1 ) m n K n ( z ) + ( 1 ) n ( m 1 ) 1 m π i I n ( z ) ,
19: 10.31 Power Series
§10.31 Power Series
10.31.1 K n ( z ) = 1 2 ( 1 2 z ) n k = 0 n 1 ( n k 1 ) ! k ! ( 1 4 z 2 ) k + ( 1 ) n + 1 ln ( 1 2 z ) I n ( z ) + ( 1 ) n 1 2 ( 1 2 z ) n k = 0 ( ψ ( k + 1 ) + ψ ( n + k + 1 ) ) ( 1 4 z 2 ) k k ! ( n + k ) ! ,
10.31.2 K 0 ( z ) = ( ln ( 1 2 z ) + γ ) I 0 ( z ) + 1 4 z 2 ( 1 ! ) 2 + ( 1 + 1 2 ) ( 1 4 z 2 ) 2 ( 2 ! ) 2 + ( 1 + 1 2 + 1 3 ) ( 1 4 z 2 ) 3 ( 3 ! ) 2 + .
10.31.3 I ν ( z ) I μ ( z ) = ( 1 2 z ) ν + μ k = 0 ( ν + μ + k + 1 ) k ( 1 4 z 2 ) k k ! Γ ( ν + k + 1 ) Γ ( μ + k + 1 ) .
20: 10.41 Asymptotic Expansions for Large Order
§10.41 Asymptotic Expansions for Large Order
§10.41(i) Asymptotic Forms
§10.41(iv) Double Asymptotic Properties