About the Project

Bessel functions and Hankel functions

AdvancedHelp

(0.014 seconds)

21—30 of 66 matching pages

21: 10.6 Recurrence Relations and Derivatives
§10.6(i) Recurrence Relations
§10.6(ii) Derivatives
22: 10.9 Integral Representations
Mehler–Sonine and Related Integrals
Schläfli–Sommerfeld Integrals
H ν ( 2 ) ( z ) = 1 π i π i e z sinh t ν t d t .
§10.9(iv) Compendia
For collections of integral representations of Bessel and Hankel functions see Erdélyi et al. (1953b, §§7.3 and 7.12), Erdélyi et al. (1954a, pp. 43–48, 51–60, 99–105, 108–115, 123–124, 272–276, and 356–357), Gröbner and Hofreiter (1950, pp. 189–192), Marichev (1983, pp. 191–192 and 196–210), Magnus et al. (1966, §3.6), and Watson (1944, Chapter 6).
23: 10.18 Modulus and Phase Functions
10.18.1 M ν ( x ) e i θ ν ( x ) = H ν ( 1 ) ( x ) ,
10.18.2 N ν ( x ) e i ϕ ν ( x ) = H ν ( 1 ) ( x ) ,
24: 10.47 Definitions and Basic Properties
10.47.5 𝗁 n ( 1 ) ( z ) = 1 2 π / z H n + 1 2 ( 1 ) ( z ) = ( 1 ) n + 1 i 1 2 π / z H n 1 2 ( 1 ) ( z ) ,
10.47.6 𝗁 n ( 2 ) ( z ) = 1 2 π / z H n + 1 2 ( 2 ) ( z ) = ( 1 ) n i 1 2 π / z H n 1 2 ( 2 ) ( z ) .
𝗃 n ( z ) and 𝗒 n ( z ) are the spherical Bessel functions of the first and second kinds, respectively; 𝗁 n ( 1 ) ( z ) and 𝗁 n ( 2 ) ( z ) are the spherical Bessel functions of the third kind. …
10.47.15 𝗁 n ( 1 ) ( z ) = ( 1 ) n 𝗁 n ( 2 ) ( z ) , 𝗁 n ( 2 ) ( z ) = ( 1 ) n 𝗁 n ( 1 ) ( z ) .
25: 10.8 Power Series
§10.8 Power Series
26: 10.41 Asymptotic Expansions for Large Order
§10.41(v) Double Asymptotic Properties (Continued)
We first prove that for the expansions (10.20.6) for the Hankel functions H ν ( 1 ) ( ν z ) and H ν ( 2 ) ( ν z ) the z -asymptotic property applies when z ± i , respectively. …
27: 9.17 Methods of Computation
In consequence of §9.6(i), algorithms for generating Bessel functions, Hankel functions, and modified Bessel functions10.74) can also be applied to Ai ( z ) , Bi ( z ) , and their derivatives. …
28: 10.52 Limiting Forms
29: 10.22 Integrals
Products
Trigonometric Arguments
Orthogonality
Orthogonality
§10.22(v) Hankel Transform
30: 11.2 Definitions