About the Project

Bernoulli lemniscate

AdvancedHelp

(0.001 seconds)

21—30 of 70 matching pages

21: 24.15 Related Sequences of Numbers
§24.15(i) Genocchi Numbers
24.15.2 G n = 2 ( 1 2 n ) B n .
§24.15(ii) Tangent Numbers
24.15.4 T 2 n 1 = ( 1 ) n 1 2 2 n ( 2 2 n 1 ) 2 n B 2 n , n = 1 , 2 , ,
§24.15(iii) Stirling Numbers
22: 24 Bernoulli and Euler Polynomials
Chapter 24 Bernoulli and Euler Polynomials
23: Karl Dilcher
Over the years he authored or coauthored numerous papers on Bernoulli numbers and related topics, and he maintains a large on-line bibliography on the subject. …
  • 24: 4.19 Maclaurin Series and Laurent Series
    In (4.19.3)–(4.19.9), B n are the Bernoulli numbers and E n are the Euler numbers (§§24.2(i)24.2(ii)).
    4.19.3 tan z = z + z 3 3 + 2 15 z 5 + 17 315 z 7 + + ( 1 ) n 1 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π ,
    4.19.4 csc z = 1 z + z 6 + 7 360 z 3 + 31 15120 z 5 + + ( 1 ) n 1 2 ( 2 2 n 1 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , 0 < | z | < π ,
    4.19.6 cot z = 1 z z 3 z 3 45 2 945 z 5 ( 1 ) n 1 2 2 n B 2 n ( 2 n ) ! z 2 n 1 , 0 < | z | < π ,
    4.19.7 ln ( sin z z ) = n = 1 ( 1 ) n 2 2 n 1 B 2 n n ( 2 n ) ! z 2 n , | z | < π ,
    25: 24.11 Asymptotic Approximations
    §24.11 Asymptotic Approximations
    24.11.1 ( 1 ) n + 1 B 2 n 2 ( 2 n ) ! ( 2 π ) 2 n ,
    24.11.2 ( 1 ) n + 1 B 2 n 4 π n ( n π e ) 2 n ,
    24.11.4 ( 1 ) n E 2 n 8 n π ( 4 n π e ) 2 n .
    24.11.5 ( 1 ) n / 2 1 ( 2 π ) n 2 ( n ! ) B n ( x ) { cos ( 2 π x ) , n  even , sin ( 2 π x ) , n  odd ,
    26: 4.33 Maclaurin Series and Laurent Series
    4.33.3 tanh z = z z 3 3 + 2 15 z 5 17 315 z 7 + + 2 2 n ( 2 2 n 1 ) B 2 n ( 2 n ) ! z 2 n 1 + , | z | < 1 2 π .
    For B 2 n see §24.2(i). …
    27: 24.12 Zeros
    §24.12(i) Bernoulli Polynomials: Real Zeros
    §24.12(iii) Complex Zeros
    For complex zeros of Bernoulli and Euler polynomials, see Delange (1987) and Dilcher (1988). A related topic is the irreducibility of Bernoulli and Euler polynomials. …
    §24.12(iv) Multiple Zeros
    28: B. L. J. Braaksma
    … …
    29: 24.8 Series Expansions
    §24.8(i) Fourier Series
    24.8.1 B 2 n ( x ) = ( 1 ) n + 1 2 ( 2 n ) ! ( 2 π ) 2 n k = 1 cos ( 2 π k x ) k 2 n ,
    §24.8(ii) Other Series
    24.8.6 B 4 n + 2 = ( 8 n + 4 ) k = 1 k 4 n + 1 e 2 π k 1 , n = 1 , 2 , ,
    24.8.7 B 2 n = ( 1 ) n + 1 4 n 2 2 n 1 k = 1 k 2 n 1 e π k + ( 1 ) k + n , n = 2 , 3 , .
    30: 25.11 Hurwitz Zeta Function
    25.11.6 ζ ( s , a ) = 1 a s ( 1 2 + a s 1 ) s ( s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s 1 , s > 1 , a > 0 .
    For B ~ n ( x ) see §24.2(iii). …
    25.11.14 ζ ( n , a ) = B n + 1 ( a ) n + 1 , n = 0 , 1 , 2 , .
    25.11.19 ζ ( s , a ) = ln a a s ( 1 2 + a s 1 ) a 1 s ( s 1 ) 2 + s ( s + 1 ) 2 0 ( B ~ 2 ( x ) B 2 ) ln ( x + a ) ( x + a ) s + 2 d x ( 2 s + 1 ) 2 0 B ~ 2 ( x ) B 2 ( x + a ) s + 2 d x , s > 1 , s 1 , a > 0 .
    25.11.34 n 0 a ζ ( 1 n , x ) d x = ζ ( n , a ) ζ ( n ) + B n + 1 B n + 1 ( a ) n ( n + 1 ) , n = 1 , 2 , , a > 0 .