About the Project

.boa%E4%BD%93%E8%82%B2%E4%B8%96%E7%95%8C%E6%9D%AF%E5%BC%80%E5%B9%95%E5%BC%8F%E3%80%8E%E4%B8%96%E7%95%8C%E6%9D%AF%E4%BD%A3%E9%87%91%E5%88%86%E7%BA%255%25%EF%BC%8C%E5%92%A8%E8%AF%A2%E4%B8%93%E5%91%98%EF%BC%9A%40ky975%E3%80%8F.n15.k2q1w9-2022%E5%B9%411%E6%9C%882%E6%97%155%E6%97%624%E5%88%865%E7%A7%92h3drpznfr

AdvancedHelp

(0.036 seconds)

11—20 of 625 matching pages

11: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • K. Driver and K. Jordaan (2013) Inequalities for extreme zeros of some classical orthogonal and q -orthogonal polynomials. Math. Model. Nat. Phenom. 8 (1), pp. 48–59.
  • G. V. Dunne and K. Rao (2000) Lamé instantons. J. High Energy Phys. 2000 (1), pp. Paper 19, 8.
  • T. M. Dunster (2001b) Uniform asymptotic expansions for Charlier polynomials. J. Approx. Theory 112 (1), pp. 93–133.
  • 12: 7.14 Integrals
    7.14.1 0 e 2 i a t erfc ( b t ) d t = 1 a π F ( a b ) + i 2 a ( 1 e ( a / b ) 2 ) , a , | ph b | < 1 4 π .
    7.14.5 0 e a t C ( t ) d t = 1 a f ( a π ) , a > 0 ,
    7.14.7 0 e a t C ( 2 t π ) d t = ( a 2 + 1 + a ) 1 2 2 a a 2 + 1 , a > 0 ,
    For collections of integrals see Apelblat (1983, pp. 131–146), Erdélyi et al. (1954a, vol. 1, pp. 40, 96, 176–177), Geller and Ng (1971), Gradshteyn and Ryzhik (2000, §§5.4 and 6.28–6.32), Marichev (1983, pp. 184–189), Ng and Geller (1969), Oberhettinger (1974, pp. 138–139, 142–143), Oberhettinger (1990, pp. 48–52, 155–158), Oberhettinger and Badii (1973, pp. 171–172, 179–181), Prudnikov et al. (1986b, vol. 2, pp. 30–36, 93–143), Prudnikov et al. (1992a, §§3.7–3.8), and Prudnikov et al. (1992b, §§3.7–3.8). …
    13: Bibliography K
  • T. A. Kaeding (1995) Pascal program for generating tables of SU ( 3 ) Clebsch-Gordan coefficients. Comput. Phys. Comm. 85 (1), pp. 8288.
  • E. H. Kaufman and T. D. Lenker (1986) Linear convergence and the bisection algorithm. Amer. Math. Monthly 93 (1), pp. 48–51.
  • N. D. Kazarinoff (1988) Special functions and the Bieberbach conjecture. Amer. Math. Monthly 95 (8), pp. 689–696.
  • N. M. Korobov (1958) Estimates of trigonometric sums and their applications. Uspehi Mat. Nauk 13 (4 (82)), pp. 185–192 (Russian).
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 14: 27.2 Functions
    27.2.9 d ( n ) = d | n 1
    It is the special case k = 2 of the function d k ( n ) that counts the number of ways of expressing n as the product of k factors, with the order of factors taken into account. …Note that σ 0 ( n ) = d ( n ) . … Table 27.2.2 tabulates the Euler totient function ϕ ( n ) , the divisor function d ( n ) ( = σ 0 ( n ) ), and the sum of the divisors σ ( n ) ( = σ 1 ( n ) ), for n = 1 ( 1 ) 52 . …
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    11 10 2 12 24 8 8 60 37 36 2 38 50 20 6 93
    15: 3.9 Acceleration of Convergence
    For further information on the epsilon algorithm see Brezinski and Redivo Zaglia (1991, pp. 78–95). …
    Table 3.9.1: Shanks’ transformation for s n = j = 1 n ( 1 ) j + 1 j 2 .
    n t n , 2 t n , 4 t n , 6 t n , 8 t n , 10
    4 0.82221 76684 88 0.82246 28314 41 0.82246 69467 93 0.82246 70314 36 0.82246 70333 75
    8 0.82243 73137 33 0.82246 67719 32 0.82246 70301 49 0.82246 70333 73 0.82246 70334 23
    9 0.82248 70624 89 0.82246 71865 91 0.82246 70351 34 0.82246 70334 48 0.82246 70334 24
    16: Bibliography O
  • A. B. Olde Daalhuis (1998b) Hyperterminants. II. J. Comput. Appl. Math. 89 (1), pp. 8795.
  • A. B. Olde Daalhuis (2010) Uniform asymptotic expansions for hypergeometric functions with large parameters. III. Analysis and Applications (Singapore) 8 (2), pp. 199–210.
  • F. W. J. Olver (1977a) Connection formulas for second-order differential equations with multiple turning points. SIAM J. Math. Anal. 8 (1), pp. 127–154.
  • F. W. J. Olver (1995) On an asymptotic expansion of a ratio of gamma functions. Proc. Roy. Irish Acad. Sect. A 95 (1), pp. 5–9.
  • C. Osácar, J. Palacián, and M. Palacios (1995) Numerical evaluation of the dilogarithm of complex argument. Celestial Mech. Dynam. Astronom. 62 (1), pp. 9398.
  • 17: 33.16 Connection Formulas
    §33.16(i) F and G in Terms of f and h
    where C ( η ) is given by (33.2.5) or (33.2.6).
    §33.16(ii) f and h in Terms of F and G when ϵ > 0
    and again define A ( ϵ , ) by (33.14.11) or (33.14.12). … and again define A ( ϵ , ) by (33.14.11) or (33.14.12). …
    18: 27.12 Asymptotic Formulas: Primes
    27.12.7 | π ( x ) li ( x ) | < 1 8 π x ln x .
    The largest known prime (2018) is the Mersenne prime 2 82 , 589 , 933 1 . …
    19: 1.14 Integral Transforms
    In this subsection we let F ( x ) = ( f ) ( x ) . If f ( t ) is absolutely integrable on ( , ) , then F ( x ) is continuous, F ( x ) 0 as x ± , and … If f ( t ) and g ( t ) are absolutely integrable on ( , ) , then so is ( f g ) ( t ) , and its Fourier transform is F ( x ) G ( x ) , where G ( x ) is the Fourier transform of g ( t ) . … If f ( t ) and g ( t ) are continuous and absolutely integrable on ( , ) , and F ( x ) = G ( x ) for all x , then f ( t ) = g ( t ) for all t . … In this subsection we let F c ( x ) = c f ( x ) , F s ( x ) = s f ( x ) , G c ( x ) = c g ( x ) , and G s ( x ) = s g ( x ) . …
    20: 33.17 Recurrence Relations and Derivatives