About the Project

.1994年世界杯小组分组_『网址:687.vii』2018世界杯直播咪咕_b5p6v3_2022年11月30日7时57分10秒_z9fzftt9n.cc

AdvancedHelp

(0.010 seconds)

21—30 of 814 matching pages

21: 18.16 Zeros
Let j α , m be the m th positive zero of the Bessel function J α ( x ) 10.21(i)). … Let ϕ m = j α , m / ρ . … For m = 1 , 2 , , n , and with j α , m as in §18.16(ii), … In the notation of this reference x n , m = u a , m , μ = 2 n + 1 , and α = μ 4 3 a m . …
§18.16(vii) Discriminants
22: Bibliography T
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • J. S. Thompson (1996) High Speed Numerical Integration of Fermi Dirac Integrals. Master’s Thesis, Naval Postgraduate School, Monterey, CA.
  • E. C. Titchmarsh (1962b) The Theory of Functions. 2nd edition, Oxford University Press, Oxford.
  • L. N. Trefethen and D. Bau (1997) Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA.
  • A. Trellakis, A. T. Galick, and U. Ravaioli (1997) Rational Chebyshev approximation for the Fermi-Dirac integral F 3 / 2 ( x ) . Solid–State Electronics 41 (5), pp. 771–773.
  • 23: Bibliography G
  • B. Gabutti (1979) On high precision methods for computing integrals involving Bessel functions. Math. Comp. 33 (147), pp. 1049–1057.
  • B. Gabutti (1980) On the generalization of a method for computing Bessel function integrals. J. Comput. Appl. Math. 6 (2), pp. 167–168.
  • J. A. Gaunt (1929) The triplets of helium. Philos. Trans. Roy. Soc. London Ser. A 228, pp. 151–196.
  • G. H. Golub and C. F. Van Loan (1996) Matrix Computations. 3rd edition, Johns Hopkins University Press, Baltimore, MD.
  • R. G. Gordon (1970) Constructing wavefunctions for nonlocal potentials. J. Chem. Phys. 52, pp. 6211–6217.
  • 24: 12.10 Uniform Asymptotic Expansions for Large Parameter
    These cases are treated in §§12.10(vii)12.10(viii). … Higher polynomials u s ( t ) can be calculated from the recurrence relation …and the v s ( t ) then follow from …
    §12.10(vii) Negative a , 2 a < x < . Expansions in Terms of Airy Functions
    The coefficients A s ( ζ ) and B s ( ζ ) are given by …
    25: 1.10 Functions of a Complex Variable
    Let f 1 ( z ) be analytic in a domain D 1 . … Then …
    §1.10(vii) Inverse Functions
    Suppose that …Let w 0 = f ( z 0 ) . …
    26: Bibliography
  • W. A. Al-Salam and L. Carlitz (1965) Some orthogonal q -polynomials. Math. Nachr. 30, pp. 47–61.
  • N. W. Ashcroft and N. D. Mermin (1976) Solid State Physics. Holt, Rinehart and Winston, New York.
  • R. Askey (1975b) Orthogonal Polynomials and Special Functions. CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 21, Society for Industrial and Applied Mathematics, Philadelphia, PA.
  • R. Askey (1989) Continuous q -Hermite Polynomials when q > 1 . In q -series and Partitions (Minneapolis, MN, 1988), IMA Vol. Math. Appl., Vol. 18, pp. 151–158.
  • J. Avron and B. Simon (1982) Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices. Bulletin of the American Mathematical Society 6 (1), pp. 81–85.
  • 27: 32.7 Bäcklund Transformations
    Let w j ( z j ) = w ( z j ; α j , β j , γ j , δ j ) , j = 0 , 1 , 2 , be solutions of P V  with … satisfies P V  with …
    §32.7(vii) Sixth Painlevé Equation
    Let w j ( z j ) = w j ( z j ; α j , β j , γ j , δ j ) , j = 0 , 1 , 2 , 3 , be solutions of P VI  with … Also, …
    28: Bibliography Q
  • C. K. Qu and R. Wong (1999) “Best possible” upper and lower bounds for the zeros of the Bessel function J ν ( x ) . Trans. Amer. Math. Soc. 351 (7), pp. 2833–2859.
  • 29: 10.75 Tables
  • Wills et al. (1982) tabulates j 0 , m , j 1 , m , y 0 , m , y 1 , m for m = 1 ( 1 ) 30 , 35D.

  • MacDonald (1989) tabulates the first 30 zeros, in ascending order of absolute value in the fourth quadrant, of the function J 0 ( z ) i J 1 ( z ) , 6D. (Other zeros of this function can be obtained by reflection in the imaginary axis).

  • Abramowitz and Stegun (1964, Chapter 11) tabulates 0 x J 0 ( t ) d t , 0 x Y 0 ( t ) d t , x = 0 ( .1 ) 10 , 10D; 0 x t 1 ( 1 J 0 ( t ) ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 5 , 8D.

  • §10.75(vii) Integrals of Modified Bessel Functions
  • Abramowitz and Stegun (1964, Chapter 11) tabulates e x 0 x I 0 ( t ) d t , e x x K 0 ( t ) d t , x = 0 ( .1 ) 10 , 7D; e x 0 x t 1 ( I 0 ( t ) 1 ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 5 , 6D.

  • 30: Bibliography N
  • G. Nemes (2018) Error bounds for the large-argument asymptotic expansions of the Lommel and allied functions. Stud. Appl. Math. 140 (4), pp. 508–541.
  • E. Neuman (1969a) Elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 99–102.
  • E. Neuman (1969b) On the calculation of elliptic integrals of the second and third kinds. Zastos. Mat. 11, pp. 91–94.
  • C. J. Noble and I. J. Thompson (1984) COULN, a program for evaluating negative energy Coulomb functions. Comput. Phys. Comm. 33 (4), pp. 413–419.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).