About the Project

.足球彩票世界杯玩法__『welcom_』_世界杯用球_w6n2c9o_2022年11月30日22时40分37秒_ttnjbxtnd.com

AdvancedHelp

(0.010 seconds)

11—20 of 783 matching pages

11: 24.20 Tables
Abramowitz and Stegun (1964, Chapter 23) includes exact values of k = 1 m k n , m = 1 ( 1 ) 100 , n = 1 ( 1 ) 10 ; k = 1 k n , k = 1 ( 1 ) k 1 k n , k = 0 ( 2 k + 1 ) n , n = 1 , 2 , , 20D; k = 0 ( 1 ) k ( 2 k + 1 ) n , n = 1 , 2 , , 18D. Wagstaff (1978) gives complete prime factorizations of N n and E n for n = 20 ( 2 ) 60 and n = 8 ( 2 ) 42 , respectively. … For information on tables published before 1961 see Fletcher et al. (1962, v. 1, §4) and Lebedev and Fedorova (1960, Chapters 11 and 14).
12: Bibliography
  • D. E. Amos (1983c) Uniform asymptotic expansions for exponential integrals E n ( x ) and Bickley functions Ki n ( x ) . ACM Trans. Math. Software 9 (4), pp. 467–479.
  • K. Aomoto (1987) Special value of the hypergeometric function F 2 3 and connection formulae among asymptotic expansions. J. Indian Math. Soc. (N.S.) 51, pp. 161–221.
  • A. Apelblat (1989) Derivatives and integrals with respect to the order of the Struve functions 𝐇 ν ( x ) and 𝐋 ν ( x ) . J. Math. Anal. Appl. 137 (1), pp. 17–36.
  • R. W. B. Ardill and K. J. M. Moriarty (1978) Spherical Bessel functions j n and y n of integer order and real argument. Comput. Phys. Comm. 14 (3-4), pp. 261–265.
  • V. I. Arnol’d (1972) Normal forms of functions near degenerate critical points, the Weyl groups A k , D k , E k and Lagrangian singularities. Funkcional. Anal. i Priložen. 6 (4), pp. 3–25 (Russian).
  • 13: Bibliography K
  • M. K. Kerimov and S. L. Skorokhodov (1984c) Evaluation of complex zeros of Bessel functions J ν ( z ) and I ν ( z ) and their derivatives. Zh. Vychisl. Mat. i Mat. Fiz. 24 (10), pp. 1497–1513.
  • S. K. Kim (1972) The asymptotic expansion of a hypergeometric function F 2 2 ( 1 , α ; ρ 1 , ρ 2 ; z ) . Math. Comp. 26 (120), pp. 963.
  • Y. S. Kim, A. K. Rathie, and R. B. Paris (2013) An extension of Saalschütz’s summation theorem for the series F r + 2 r + 3 . Integral Transforms Spec. Funct. 24 (11), pp. 916–921.
  • C. G. Kokologiannaki, P. D. Siafarikas, and C. B. Kouris (1992) On the complex zeros of H μ ( z ) , J μ ( z ) , J μ ′′ ( z ) for real or complex order. J. Comput. Appl. Math. 40 (3), pp. 337–344.
  • E. D. Krupnikov and K. S. Kölbig (1997) Some special cases of the generalized hypergeometric function F q q + 1 . J. Comput. Appl. Math. 78 (1), pp. 79–95.
  • 14: 26.12 Plane Partitions
    26.12.9 ( h = 1 r j = 1 s h + j + t 1 h + j 1 ) 2 ;
    26.12.10 ( h = 1 r j = 1 s h + j + t 1 h + j 1 ) ( h = 1 r + 1 j = 1 s h + j + t 1 h + j 1 ) ;
    26.12.11 ( h = 1 r + 1 j = 1 s h + j + t 1 h + j 1 ) ( h = 1 r j = 1 s + 1 h + j + t 1 h + j 1 ) .
    The notation π B ( r , s , t ) denotes the sum over all plane partitions contained in B ( r , s , t ) , and | π | denotes the number of elements in π . … where σ 2 ( j ) is the sum of the squares of the divisors of j . …
    15: 10.75 Tables
  • Wills et al. (1982) tabulates j 0 , m , j 1 , m , y 0 , m , y 1 , m for m = 1 ( 1 ) 30 , 35D.

  • MacDonald (1989) tabulates the first 30 zeros, in ascending order of absolute value in the fourth quadrant, of the function J 0 ( z ) i J 1 ( z ) , 6D. (Other zeros of this function can be obtained by reflection in the imaginary axis).

  • Abramowitz and Stegun (1964, Chapter 11) tabulates 0 x J 0 ( t ) d t , 0 x Y 0 ( t ) d t , x = 0 ( .1 ) 10 , 10D; 0 x t 1 ( 1 J 0 ( t ) ) d t , x t 1 Y 0 ( t ) d t , x = 0 ( .1 ) 5 , 8D.

  • Abramowitz and Stegun (1964, Chapter 11) tabulates e x 0 x I 0 ( t ) d t , e x x K 0 ( t ) d t , x = 0 ( .1 ) 10 , 7D; e x 0 x t 1 ( I 0 ( t ) 1 ) d t , x e x x t 1 K 0 ( t ) d t , x = 0 ( .1 ) 5 , 6D.

  • Zhang and Jin (1996, pp. 296–305) tabulates 𝗃 n ( x ) , 𝗃 n ( x ) , 𝗒 n ( x ) , 𝗒 n ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗂 n ( 1 ) ( x ) , 𝗄 n ( x ) , 𝗄 n ( x ) , n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; x 𝗃 n ( x ) , ( x 𝗃 n ( x ) ) , x 𝗒 n ( x ) , ( x 𝗒 n ( x ) ) (Riccati–Bessel functions and their derivatives), n = 0 ( 1 ) 10 ( 10 ) 30 , 50, 100, x = 1 , 5, 10, 25, 50, 100, 8S; real and imaginary parts of 𝗃 n ( z ) , 𝗃 n ( z ) , 𝗒 n ( z ) , 𝗒 n ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗂 n ( 1 ) ( z ) , 𝗄 n ( z ) , 𝗄 n ( z ) , n = 0 ( 1 ) 15 , 20(10)50, 100, z = 4 + 2 i , 20 + 10 i , 8S. (For the notation replace j , y , i , k by 𝗃 , 𝗒 , 𝗂 ( 1 ) , 𝗄 , respectively.)

  • 16: 34.1 Special Notation
    ( j 1 j 2 j 3 m 1 m 2 m 3 ) ,
    { j 1 j 2 j 3 l 1 l 2 l 3 } ,
    { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } .
    An often used alternative to the 3 j symbol is the Clebsch–Gordan coefficient
    34.1.1 ( j 1 m 1 j 2 m 2 | j 1 j 2 j 3 m 3 ) = ( 1 ) j 1 j 2 + m 3 ( 2 j 3 + 1 ) 1 2 ( j 1 j 2 j 3 m 1 m 2 m 3 ) ;
    17: 1.3 Determinants, Linear Operators, and Spectral Expansions
    The cofactor A j k of a j k is … For real-valued a j k , … where ω 1 , ω 2 , , ω n are the n th roots of unity (1.11.21). … If 𝐷 n [ a j , k ] tends to a limit L as n , then we say that the infinite determinant 𝐷 [ a j , k ] converges and 𝐷 [ a j , k ] = L . … The corresponding eigenvectors 𝐚 1 , , 𝐚 n can be chosen such that they form a complete orthonormal basis in 𝐄 n . …
    18: 26.16 Multiset Permutations
    Let S = { 1 a 1 , 2 a 2 , , n a n } be the multiset that has a j copies of j , 1 j n . 𝔖 S denotes the set of permutations of S for all distinct orderings of the a 1 + a 2 + + a n integers. The number of elements in 𝔖 S is the multinomial coefficient (§26.4) ( a 1 + a 2 + + a n a 1 , a 2 , , a n ) . … The q -multinomial coefficient is defined in terms of Gaussian polynomials (§26.9(ii)) by …and again with S = { 1 a 1 , 2 a 2 , , n a n } we have …
    19: 30.7 Graphics
    See accompanying text
    Figure 30.7.4: Eigenvalues λ n 10 ( γ 2 ) , n = 10 , 11 , 12 , 13 , 50 γ 2 150 . Magnify
    See accompanying text
    Figure 30.7.5: 𝖯𝗌 n 0 ( x , 4 ) , n = 0 , 1 , 2 , 3 , 1 x 1 . Magnify
    See accompanying text
    Figure 30.7.6: 𝖯𝗌 n 0 ( x , 4 ) , n = 0 , 1 , 2 , 3 , 1 x 1 . Magnify
    See accompanying text
    Figure 30.7.7: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
    See accompanying text
    Figure 30.7.8: 𝖯𝗌 n 1 ( x , 30 ) , n = 1 , 2 , 3 , 4 , 1 x 1 . Magnify
    20: 24.19 Methods of Computation
    Equations (24.5.3) and (24.5.4) enable B n and E n to be computed by recurrence. …For example, the tangent numbers T n can be generated by simple recurrence relations obtained from (24.15.3), then (24.15.4) is applied. … For other information see Chellali (1988) and Zhang and Jin (1996, pp. 1–11). For algorithms for computing B n , E n , B n ( x ) , and E n ( x ) see Spanier and Oldham (1987, pp. 37, 41, 171, and 179–180).
    §24.19(ii) Values of B n Modulo p