About the Project

.今年世界杯对阵__『wn4.com_』_巴西世界杯梅西金球奖_w6n2c9o_2022年11月30日8时7分_lvhhtouai.com

AdvancedHelp

(0.012 seconds)

21—30 of 783 matching pages

21: 16.11 Asymptotic Expansions
For subsequent use we define two formal infinite series, E p , q ( z ) and H p , q ( z ) , as follows: …and b q + 1 = 1 . Explicit representations for the coefficients c k are given in Volkmer (2023). … In this subsection we assume that none of a 1 , a 2 , , a p is a nonpositive integer. … Explicit representations for the coefficients c k are given in Volkmer and Wood (2014). …
22: 16.19 Identities
16.19.1 G p , q m , n ( 1 z ; a 1 , , a p b 1 , , b q ) = G q , p n , m ( z ; 1 b 1 , , 1 b q 1 a 1 , , 1 a p ) ,
16.19.2 z μ G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ( z ; a 1 + μ , , a p + μ b 1 + μ , , b q + μ ) ,
16.19.3 G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q , a 0 ) = G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
16.19.5 ϑ G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) = G p , q m , n ( z ; a 1 1 , a 2 , , a p b 1 , , b q ) + ( a 1 1 ) G p , q m , n ( z ; a 1 , , a p b 1 , , b q ) ,
16.19.6 0 1 t a 0 ( 1 t ) a 0 b q + 1 1 G p , q m , n ( z t ; a 1 , , a p b 1 , , b q ) d t = Γ ( a 0 b q + 1 ) G p + 1 , q + 1 m , n + 1 ( z ; a 0 , , a p b 1 , , b q + 1 ) ,
23: 1.3 Determinants, Linear Operators, and Spectral Expansions
The cofactor A j k of a j k is … For real-valued a j k , … where ω 1 , ω 2 , , ω n are the n th roots of unity (1.11.21). … If 𝐷 n [ a j , k ] tends to a limit L as n , then we say that the infinite determinant 𝐷 [ a j , k ] converges and 𝐷 [ a j , k ] = L . … The corresponding eigenvectors 𝐚 1 , , 𝐚 n can be chosen such that they form a complete orthonormal basis in 𝐄 n . …
24: 17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
§17.5 ϕ 0 0 , ϕ 0 1 , ϕ 1 1 Functions
17.5.1 ϕ 0 0 ( ; ; q , z ) = n = 0 ( 1 ) n q ( n 2 ) z n ( q ; q ) n = ( z ; q ) ;
25: 16.8 Differential Equations
is a value z 0 of z at which all the coefficients f j ( z ) , j = 0 , 1 , , n 1 , are analytic. If z 0 is not an ordinary point but ( z z 0 ) n j f j ( z ) , j = 0 , 1 , , n 1 , are analytic at z = z 0 , then z 0 is a regular singularity. … where α j and β j are constants. … where indicates that the entry 1 + b j b j is omitted. … where indicates that the entry 1 a j + a j is omitted. …
26: 3.6 Linear Difference Equations
Given numerical values of w 0 and w 1 , the solution w n of the equation …These errors have the effect of perturbing the solution by unwanted small multiples of w n and of an independent solution g n , say. … The unwanted multiples of g n now decay in comparison with w n , hence are of little consequence. … The latter method is usually superior when the true value of w 0 is zero or pathologically small. … beginning with e 0 = w 0 . …
27: 16.2 Definition and Analytic Properties
Throughout this chapter it is assumed that none of the bottom parameters b 1 , b 2 , , b q is a nonpositive integer, unless stated otherwise. Then formally …Equivalently, the function is denoted by F q p ( 𝐚 𝐛 ; z ) or F q p ( 𝐚 ; 𝐛 ; z ) , and sometimes, for brevity, by F q p ( z ) . … Suppose first one or more of the top parameters a j is a nonpositive integer. … See §16.5 for the definition of F q p ( 𝐚 ; 𝐛 ; z ) as a contour integral when p > q + 1 and none of the a k is a nonpositive integer. … When p q + 1 and z is fixed and not a branch point, any branch of 𝐅 q p ( 𝐚 ; 𝐛 ; z ) is an entire function of each of the parameters a 1 , , a p , b 1 , , b q .
28: 16.6 Transformations of Variable
16.6.1 F 2 3 ( a , b , c a b + 1 , a c + 1 ; z ) = ( 1 z ) a F 2 3 ( a b c + 1 , 1 2 a , 1 2 ( a + 1 ) a b + 1 , a c + 1 ; 4 z ( 1 z ) 2 ) .
16.6.2 F 2 3 ( a , 2 b a 1 , 2 2 b + a b , a b + 3 2 ; z 4 ) = ( 1 z ) a F 2 3 ( 1 3 a , 1 3 a + 1 3 , 1 3 a + 2 3 b , a b + 3 2 ; 27 z 4 ( 1 z ) 3 ) .
For Kummer-type transformations of F 2 2 functions see Miller (2003) and Paris (2005a), and for further transformations see Erdélyi et al. (1953a, §4.5), Miller and Paris (2011), Choi and Rathie (2013) and Wang and Rathie (2013).
29: 17.9 Further Transformations of ϕ r r + 1 Functions
§17.9(i) ϕ 1 2 ϕ 2 2 , ϕ 1 3 , or ϕ 2 3
§17.9(ii) ϕ 2 3 ϕ 2 3
Transformations of ϕ 2 3 -Series
§17.9(iii) Further ϕ s r Functions
Sears’ Balanced ϕ 3 4 Transformations
30: 10.63 Recurrence Relations and Derivatives
§10.63(i) ber ν x , bei ν x , ker ν x , kei ν x
Let f ν ( x ) , g ν ( x ) denote any one of the ordered pairs:
ber ν x , bei ν x ;
bei ν x , ber ν x ;
ker ν x , kei ν x ;