About the Project

.%E8%B6%B3%E7%90%83%E5%BD%A9%E7%A5%A8%E4%B8%96%E7%95%8C%E6%9D%AF%E7%8E%A9%E6%B3%95__%E3%80%8Ewn4.com_%E3%80%8F_%E4%B8%96%E7%95%8C%E6%9D%AF%E7%94%A8%E7%90%83_w6n2c9o_2022%E5%B9%B411%E6%9C%8830%E6%97%A522%E6%97%B640%E5%88%8637%E7%A7%92_ttnjbxtnd.com

AdvancedHelp

(0.078 seconds)

21—30 of 821 matching pages

21: Bibliography N
  • G. Nemes (2013c) Generalization of Binet’s Gamma function formulas. Integral Transforms Spec. Funct. 24 (8), pp. 597–606.
  • N. Nielsen (1909) Der Eulersche Dilogarithmus und seine Verallgemeinerungen. Nova Acta Leopoldina 90, pp. 123–212.
  • V. Yu. Novokshënov (1985) The asymptotic behavior of the general real solution of the third Painlevé equation. Dokl. Akad. Nauk SSSR 283 (5), pp. 1161–1165 (Russian).
  • Numerical Recipes (commercial C, C++, Fortran 77, and Fortran 90 libraries)
  • H. M. Nussenzveig (1965) High-frequency scattering by an impenetrable sphere. Ann. Physics 34 (1), pp. 23–95.
  • 22: 27.20 Methods of Computation: Other Number-Theoretic Functions
    See Calkin et al. (2007), and Lehmer (1941, pp. 5–83). …
    23: 20.4 Values at z = 0
    20.4.1 θ 1 ( 0 , q ) = θ 2 ( 0 , q ) = θ 3 ( 0 , q ) = θ 4 ( 0 , q ) = 0 ,
    20.4.2 θ 1 ( 0 , q ) = 2 q 1 / 4 n = 1 ( 1 q 2 n ) 3 = 2 q 1 / 4 ( q 2 ; q 2 ) 3 ,
    20.4.9 θ 2 ′′ ( 0 , q ) θ 2 ( 0 , q ) = 1 8 n = 1 q 2 n ( 1 + q 2 n ) 2 ,
    20.4.10 θ 3 ′′ ( 0 , q ) θ 3 ( 0 , q ) = 8 n = 1 q 2 n 1 ( 1 + q 2 n 1 ) 2 ,
    20.4.11 θ 4 ′′ ( 0 , q ) θ 4 ( 0 , q ) = 8 n = 1 q 2 n 1 ( 1 q 2 n 1 ) 2 .
    24: 4.10 Integrals
    4.10.5 0 1 ln t 1 t d t = π 2 6 ,
    4.10.6 0 1 ln t 1 + t d t = π 2 12 ,
    4.10.7 0 x d t ln t = li ( x ) , x > 1 .
    Extensive compendia of indefinite and definite integrals of logarithms and exponentials include Apelblat (1983, pp. 16–47), Bierens de Haan (1939), Gröbner and Hofreiter (1949, pp. 107–116), Gröbner and Hofreiter (1950, pp. 52–90), Gradshteyn and Ryzhik (2000, Chapters 2–4), and Prudnikov et al. (1986a, §§1.3, 1.6, 2.3, 2.6).
    25: 26.6 Other Lattice Path Numbers
    Delannoy Number D ( m , n )
    D ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . …
    26.6.12 C ( n ) = k = 1 n N ( n , k ) ,
    26.6.13 M ( n ) = k = 0 n ( 1 ) k ( n k ) C ( n + 1 k ) ,
    26.6.14 C ( n ) = k = 0 2 n ( 1 ) k ( 2 n k ) M ( 2 n k ) .
    26: 25.6 Integer Arguments
    ζ ( 4 ) = π 4 90 ,
    25.6.2 ζ ( 2 n ) = ( 2 π ) 2 n 2 ( 2 n ) ! | B 2 n | , n = 1 , 2 , 3 , .
    25.6.3 ζ ( n ) = B n + 1 n + 1 , n = 1 , 2 , 3 , .
    25.6.5 ζ ( k + 1 ) = 1 k ! n 1 = 1 n k = 1 1 n 1 n k ( n 1 + + n k ) , k = 1 , 2 , 3 , .
    where γ 1 is given by (25.2.5). …
    27: Bibliography G
  • G. Gasper and M. Rahman (1990) Basic Hypergeometric Series. Encyclopedia of Mathematics and its Applications, Vol. 35, Cambridge University Press, Cambridge.
  • G. Gasper and M. Rahman (2004) Basic Hypergeometric Series. Second edition, Encyclopedia of Mathematics and its Applications, Vol. 96, Cambridge University Press, Cambridge.
  • W. Gautschi (1964b) Algorithm 236: Bessel functions of the first kind. Comm. ACM 7 (8), pp. 479–480.
  • W. Gautschi (1965) Algorithm 259: Legendre functions for arguments larger than one. Comm. ACM 8 (8), pp. 488–492.
  • A. Gil, J. Segura, and N. M. Temme (2012) An improved algorithm and a Fortran 90 module for computing the conical function P 1 / 2 + i τ m ( x ) . Comput. Phys. Commun. 183 (3), pp. 794–799.
  • 28: Bibliography T
  • I. C. Tang (1969) Some definite integrals and Fourier series for Jacobian elliptic functions. Z. Angew. Math. Mech. 49, pp. 9596.
  • N. M. Temme (1994a) A set of algorithms for the incomplete gamma functions. Probab. Engrg. Inform. Sci. 8, pp. 291–307.
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • W. J. Thompson (1997) Atlas for Computing Mathematical Functions: An Illustrated Guide for Practitioners. John Wiley & Sons Inc., New York.
  • 29: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • P. G. L. Dirichlet (1849) Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1849, pp. 69–83 (German).
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • K. Driver and K. Jordaan (2013) Inequalities for extreme zeros of some classical orthogonal and q -orthogonal polynomials. Math. Model. Nat. Phenom. 8 (1), pp. 48–59.
  • G. V. Dunne and K. Rao (2000) Lamé instantons. J. High Energy Phys. 2000 (1), pp. Paper 19, 8.
  • 30: Bibliography I
  • Y. Ikebe, Y. Kikuchi, I. Fujishiro, N. Asai, K. Takanashi, and M. Harada (1993) The eigenvalue problem for infinite compact complex symmetric matrices with application to the numerical computation of complex zeros of J 0 ( z ) i J 1 ( z ) and of Bessel functions J m ( z ) of any real order m . Linear Algebra Appl. 194, pp. 35–70.
  • E. L. Ince (1940b) Further investigations into the periodic Lamé functions. Proc. Roy. Soc. Edinburgh 60, pp. 83–99.
  • A. Iserles, S. P. Nørsett, and S. Olver (2006) Highly Oscillatory Quadrature: The Story So Far. In Numerical Mathematics and Advanced Applications, A. Bermudez de Castro and others (Eds.), pp. 97–118.