About the Project

.%E8%81%94%E9%80%9A%E7%9B%92%E5%AD%90%E6%80%8E%E4%B9%88%E7%9C%8B%E4%B8%96%E7%95%8C%E6%9D%AF_%E3%80%8Ewn4.com_%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E8%B5%8C%E7%90%83%E5%B9%B3%E4%BA%86%E6%80%8E%E4%B9%88%E7%AE%97_w6n2c9o_2022%E5%B9%B411%E6%9C%8829%E6%97%A55%E6%97%B631%E5%88%8638%E7%A7%92_m2c8qeq0s

AdvancedHelp

Did you mean .%E8%81%94%E9%80%9A%E7%9B%92%E5%AD%90%E6%80%8E%E4%B9%88%E7%9C%8B%E4%B8%96%E7%95%8C%E6%9D%AF_%E3%80%8Ewn4.com_%E3%80%8F%E4%B8%96%E7%95%8C%E6%9D%AF%E8%B5%8C%E7%90%83%E5%B9%B3%E4%BA%86%E6%80%8E%E4%B9%88%E7%AE%97_w6n2c9o_2022%E5%B9%411%E6%9C%882%E6%97%155%E6%97%631%E5%88%86384%E7%A7%92_m2c8qeq0s ?

(0.040 seconds)

1—10 of 670 matching pages

1: 34.6 Definition: 9 ⁒ j Symbol
§34.6 Definition: 9 ⁒ j Symbol
β–ΊThe 9 ⁒ j symbol may be defined either in terms of 3 ⁒ j symbols or equivalently in terms of 6 ⁒ j symbols: β–Ί
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  ⁒ m r ⁒ s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ⁒ ( j 21 j 22 j 23 m 21 m 22 m 23 ) ⁒ ( j 31 j 32 j 33 m 31 m 32 m 33 ) ⁒ ( j 11 j 21 j 31 m 11 m 21 m 31 ) ⁒ ( j 12 j 22 j 32 m 12 m 22 m 32 ) ⁒ ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
β–Ί
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 ⁒ j ⁒ ( 2 ⁒ j + 1 ) ⁒ { j 11 j 21 j 31 j 32 j 33 j } ⁒ { j 12 j 22 j 32 j 21 j j 23 } ⁒ { j 13 j 23 j 33 j j 11 j 12 } .
β–ΊThe 9 ⁒ j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: Bibliography
β–Ί
  • A. R. Ahmadi and S. E. Widnall (1985) Unsteady lifting-line theory as a singular-perturbation problem. J. Fluid Mech 153, pp. 59–81.
  • β–Ί
  • W. O. Amrein, A. M. Hinz, and D. B. Pearson (Eds.) (2005) Sturm-Liouville Theory. Birkhäuser Verlag, Basel.
  • β–Ί
  • G. E. Andrews and R. Askey (1985) Classical Orthogonal Polynomials. In Orthogonal Polynomials and Applications, C. Brezinski, A. Draux, A. P. Magnus, P. Maroni, and A. Ronveaux (Eds.), Lecture Notes in Math., Vol. 1171, pp. 36–62.
  • β–Ί
  • T. M. Apostol (2008) A primer on Bernoulli numbers and polynomials. Math. Mag. 81 (3), pp. 178–190.
  • β–Ί
  • J. Avron and B. Simon (1982) Singular Continuous Spectrum for a Class of Almost Periodic Jacobi Matrices. Bulletin of the American Mathematical Society 6 (1), pp. 81–85.
  • 3: Bibliography H
    β–Ί
  • P. I. HadΕΎi (1968) Computation of certain integrals that contain a probability function. Bul. Akad. Ε tiince RSS Moldoven 1968 (2), pp. 81–104. (errata insert) (Russian).
  • β–Ί
  • P. I. HadΕΎi (1972) Certain sums that contain cylindrical functions. Bul. Akad. Ε tiince RSS Moldoven. 1972 (3), pp. 75–77, 94 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1973) The Laplace transform for expressions that contain a probability function. Bul. Akad. Ε tiince RSS Moldoven. 1973 (2), pp. 78–80, 93 (Russian).
  • β–Ί
  • P. I. HadΕΎi (1976a) Expansions for the probability function in series of ČebyΕ‘ev polynomials and Bessel functions. Bul. Akad. Ε tiince RSS Moldoven. 1976 (1), pp. 77–80, 96 (Russian).
  • β–Ί
  • B. A. Hargrave (1978) High frequency solutions of the delta wing equations. Proc. Roy. Soc. Edinburgh Sect. A 81 (3-4), pp. 299–316.
  • 4: Bibliography Z
    β–Ί
  • M. R. Zaghloul (2016) Remark on “Algorithm 916: computing the Faddeyeva and Voigt functions”: efficiency improvements and Fortran translation. ACM Trans. Math. Softw. 42 (3), pp. 26:1–26:9.
  • β–Ί
  • M. R. Zaghloul (2017) Algorithm 985: Simple, Efficient, and Relatively Accurate Approximation for the Evaluation of the Faddeyeva Function. ACM Trans. Math. Softw. 44 (2), pp. 22:1–22:9.
  • β–Ί
  • R. Zanovello (1978) Su un integrale definito del prodotto di due funzioni di Struve. Atti Accad. Sci. Torino Cl. Sci. Fis. Mat. Natur. 112 (1-2), pp. 63–81 (Italian).
  • β–Ί
  • J. Zhang (1996) A note on the Ο„ -method approximations for the Bessel functions Y 0 ⁒ ( z ) and Y 1 ⁒ ( z ) . Comput. Math. Appl. 31 (9), pp. 63–70.
  • β–Ί
  • A. Zhedanov (1998) On some classes of polynomials orthogonal on arcs of the unit circle connected with symmetric orthogonal polynomials on an interval. J. Approx. Theory 94 (1), pp. 73–106.
  • 5: Bibliography D
    β–Ί
  • K. Dilcher (1987b) Irreducibility of certain generalized Bernoulli polynomials belonging to quadratic residue class characters. J. Number Theory 25 (1), pp. 72–80.
  • β–Ί
  • K. Dilcher (1988) Zeros of Bernoulli, generalized Bernoulli and Euler polynomials. Mem. Amer. Math. Soc. 73 (386), pp. iv+94.
  • β–Ί
  • P. G. L. Dirichlet (1837) Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1837, pp. 45–81 (German).
  • β–Ί
  • B. Döring (1966) Complex zeros of cylinder functions. Math. Comp. 20 (94), pp. 215–222.
  • β–Ί
  • C. F. Dunkl and Y. Xu (2001) Orthogonal Polynomials of Several Variables. Encyclopedia of Mathematics and its Applications, Vol. 81, Cambridge University Press, Cambridge.
  • 6: 26.6 Other Lattice Path Numbers
    β–Ί
    Delannoy Number D ⁑ ( m , n )
    β–Ί D ⁑ ( m , n ) is the number of paths from ( 0 , 0 ) to ( m , n ) that are composed of directed line segments of the form ( 1 , 0 ) , ( 0 , 1 ) , or ( 1 , 1 ) . β–Ί
    26.6.1 D ⁑ ( m , n ) = k = 0 n ( n k ) ⁒ ( m + n k n ) = k = 0 n 2 k ⁒ ( m k ) ⁒ ( n k ) .
    β–Ί
    Table 26.6.1: Delannoy numbers D ⁑ ( m , n ) .
    β–Ί β–Ίβ–Ί
    m n
    β–Ί
    β–Ί
    26.6.4 r ⁑ ( n ) = D ⁑ ( n , n ) D ⁑ ( n + 1 , n 1 ) , n 1 .
    7: DLMF Project News
    error generating summary
    8: Bibliography W
    β–Ί
  • Z. Wang and R. Wong (2003) Asymptotic expansions for second-order linear difference equations with a turning point. Numer. Math. 94 (1), pp. 147–194.
  • β–Ί
  • S. O. Warnaar (1998) A note on the trinomial analogue of Bailey’s lemma. J. Combin. Theory Ser. A 81 (1), pp. 114–118.
  • β–Ί
  • J. K. G. Watson (1999) Asymptotic approximations for certain 6 - j and 9 - j symbols. J. Phys. A 32 (39), pp. 6901–6902.
  • β–Ί
  • J. V. Wehausen and E. V. Laitone (1960) Surface Waves. In Handbuch der Physik, Vol. 9, Part 3, pp. 446–778.
  • β–Ί
  • R. Wong and H. Li (1992b) Asymptotic expansions for second-order linear difference equations. J. Comput. Appl. Math. 41 (1-2), pp. 65–94.
  • 9: Bibliography F
    β–Ί
  • F. Feuillebois (1991) Numerical calculation of singular integrals related to Hankel transform. Comput. Math. Appl. 21 (2-3), pp. 87–94.
  • β–Ί
  • S. R. Finch (2003) Mathematical Constants. Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, Cambridge.
  • β–Ί
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • β–Ί
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.
  • β–Ί
  • T. Fukushima (2012) Series expansions of symmetric elliptic integrals. Math. Comp. 81 (278), pp. 957–990.
  • 10: 1.11 Zeros of Polynomials
    β–ΊSet z = w 1 3 ⁒ a to reduce f ⁑ ( z ) = z 3 + a ⁒ z 2 + b ⁒ z + c to g ⁑ ( w ) = w 3 + p ⁒ w + q , with p = ( 3 ⁒ b a 2 ) / 3 , q = ( 2 ⁒ a 3 9 ⁒ a ⁒ b + 27 ⁒ c ) / 27 . … β–Ί f ⁑ ( z ) = z 3 6 ⁒ z 2 + 6 ⁒ z 2 , g ⁑ ( w ) = w 3 6 ⁒ w 6 , A = 3 ⁒ 4 3 , B = 3 ⁒ 2 3 . … β–ΊResolvent cubic is z 3 + 12 ⁒ z 2 + 20 ⁒ z + 9 = 0 with roots ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 11 + 85 ) , ΞΈ 3 = 1 2 ⁒ ( 11 85 ) , and ΞΈ 1 = 1 , ΞΈ 2 = 1 2 ⁒ ( 17 + 5 ) , ΞΈ 3 = 1 2 ⁒ ( 17 5 ) . … β–ΊLet … β–ΊThen f ⁑ ( z ) , with a n 0 , is stable iff a 0 0 ; D 2 ⁒ k > 0 , k = 1 , , 1 2 ⁒ n ; sign ⁑ D 2 ⁒ k + 1 = sign ⁑ a 0 , k = 0 , 1 , , 1 2 ⁒ n 1 2 .