About the Project

贝尔法斯特圣玛丽学院国际商务文凭证书【购证 微kaa77788】pi/2

AdvancedHelp

The term"kaa77788" was not found.Possible alternative term: "27789".

(0.018 seconds)

1—10 of 135 matching pages

1: 4.25 Continued Fractions
4.25.1 tan z = z 1 z 2 3 z 2 5 z 2 7 , z ± 1 2 π , ± 3 2 π , .
4.25.2 tan ( a z ) = a tan z 1 + ( 1 a 2 ) tan 2 z 3 + ( 4 a 2 ) tan 2 z 5 + ( 9 a 2 ) tan 2 z 7 + , | z | < 1 2 π , a z ± 1 2 π , ± 3 2 π , .
2: 19.5 Maclaurin and Related Expansions
19.5.4 Π ( α 2 , k ) = π 2 n = 0 ( 1 2 ) n n ! m = 0 n ( 1 2 ) m m ! k 2 m α 2 n 2 m = π 2 F 1 ( 1 2 ; 1 2 , 1 ; 1 ; k 2 , α 2 ) ,
19.5.8 K ( k ) = π 2 ( 1 + 2 n = 1 q n 2 ) 2 , | q | < 1 ,
3: 10.65 Power Series
ber ν x = ( 1 2 x ) ν k = 0 cos ( 3 4 ν π + 1 2 k π ) k ! Γ ( ν + k + 1 ) ( 1 4 x 2 ) k ,
bei ν x = ( 1 2 x ) ν k = 0 sin ( 3 4 ν π + 1 2 k π ) k ! Γ ( ν + k + 1 ) ( 1 4 x 2 ) k .
10.65.3 ker n x = 1 2 ( 1 2 x ) n k = 0 n 1 ( n k 1 ) ! k ! cos ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ln ( 1 2 x ) ber n x + 1 4 π bei n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! cos ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ,
10.65.4 kei n x = 1 2 ( 1 2 x ) n k = 0 n 1 ( n k 1 ) ! k ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k ln ( 1 2 x ) bei n x 1 4 π ber n x + 1 2 ( 1 2 x ) n k = 0 ψ ( k + 1 ) + ψ ( n + k + 1 ) k ! ( n + k ) ! sin ( 3 4 n π + 1 2 k π ) ( 1 4 x 2 ) k .
4: 5.4 Special Values and Extrema
5.4.16 ψ ( i y ) = 1 2 y + π 2 coth ( π y ) ,
5.4.18 ψ ( 1 + i y ) = 1 2 y + π 2 coth ( π y ) .
5.4.19 ψ ( p q ) = γ ln q π 2 cot ( π p q ) + 1 2 k = 1 q 1 cos ( 2 π k p q ) ln ( 2 2 cos ( 2 π k q ) ) .
5: 10.15 Derivatives with Respect to Order
10.15.3 J ν ( z ) ν | ν = n = π 2 Y n ( z ) + n ! 2 ( 1 2 z ) n k = 0 n 1 ( 1 2 z ) k J k ( z ) k ! ( n k ) .
10.15.5 J ν ( z ) ν | ν = 0 = π 2 Y 0 ( z ) , Y ν ( z ) ν | ν = 0 = π 2 J 0 ( z ) .
6: 20.2 Definitions and Periodic Properties
20.2.11 θ 1 ( z | τ ) = θ 2 ( z + 1 2 π | τ ) = i M θ 4 ( z + 1 2 π τ | τ ) = i M θ 3 ( z + 1 2 π + 1 2 π τ | τ ) ,
20.2.12 θ 2 ( z | τ ) = θ 1 ( z + 1 2 π | τ ) = M θ 3 ( z + 1 2 π τ | τ ) = M θ 4 ( z + 1 2 π + 1 2 π τ | τ ) ,
20.2.13 θ 3 ( z | τ ) = θ 4 ( z + 1 2 π | τ ) = M θ 2 ( z + 1 2 π τ | τ ) = M θ 1 ( z + 1 2 π + 1 2 π τ | τ ) ,
20.2.14 θ 4 ( z | τ ) = θ 3 ( z + 1 2 π | τ ) = i M θ 1 ( z + 1 2 π τ | τ ) = i M θ 2 ( z + 1 2 π + 1 2 π τ | τ ) .
7: 28.22 Connection Formulas
28.22.5 g e , 2 m ( h ) = ( 1 ) m 2 π ce 2 m ( 1 2 π , h 2 ) A 0 2 m ( h 2 ) ,
28.22.6 g e , 2 m + 1 ( h ) = ( 1 ) m + 1 2 π ce 2 m + 1 ( 1 2 π , h 2 ) h A 1 2 m + 1 ( h 2 ) ,
28.22.7 g o , 2 m + 1 ( h ) = ( 1 ) m 2 π se 2 m + 1 ( 1 2 π , h 2 ) h B 1 2 m + 1 ( h 2 ) ,
28.22.8 g o , 2 m + 2 ( h ) = ( 1 ) m + 1 2 π se 2 m + 2 ( 1 2 π , h 2 ) h 2 B 2 2 m + 2 ( h 2 ) ,
8: 22.11 Fourier and Hyperbolic Series
22.11.3 dn ( z , k ) = π 2 K + 2 π K n = 1 q n cos ( 2 n ζ ) 1 + q 2 n .
22.11.7 ns ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
22.11.8 ds ( z , k ) π 2 K csc ζ = 2 π K n = 0 q 2 n + 1 sin ( ( 2 n + 1 ) ζ ) 1 + q 2 n + 1 ,
22.11.9 cs ( z , k ) π 2 K cot ζ = 2 π K n = 1 q 2 n sin ( 2 n ζ ) 1 + q 2 n ,
22.11.10 dc ( z , k ) π 2 K sec ζ = 2 π K n = 0 ( 1 ) n q 2 n + 1 cos ( ( 2 n + 1 ) ζ ) 1 q 2 n + 1 ,
9: 10.67 Asymptotic Expansions for Large Argument
10.67.1 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) ,
10.67.2 kei ν x e x / 2 ( π 2 x ) 1 2 k = 0 a k ( ν ) x k sin ( x 2 + ( ν 2 + k 4 + 1 8 ) π ) .
10.67.5 ker ν x e x / 2 ( π 2 x ) 1 2 k = 0 b k ( ν ) x k cos ( x 2 + ( ν 2 + k 4 1 8 ) π ) ,
10.67.6 kei ν x e x / 2 ( π 2 x ) 1 2 k = 0 b k ( ν ) x k sin ( x 2 + ( ν 2 + k 4 1 8 ) π ) .
10.67.13 ker 2 x + kei 2 x π 2 x e x 2 ( 1 1 4 2 1 x + 1 64 1 x 2 + 33 256 2 1 x 3 1797 8192 1 x 4 + ) ,
10: 8.11 Asymptotic Approximations and Expansions
8.11.6 γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , 0 < λ < 1 , | ph a | π 2 δ .
8.11.7 Γ ( a , z ) z a e z k = 0 ( a ) k b k ( λ ) ( z a ) 2 k + 1 , λ > 1 , | ph a | 3 π 2 δ .
The expansion (8.11.7) also applies when a is replaced by a , λ < 0 and | ph a | 3 π 2 ω δ with ω = ph ( λ + ln ( λ ) + π i ) , 0 < ω < π . …
8.11.12 Γ ( z , z ) z z 1 e z ( π 2 z 1 2 1 3 + 2 π 24 z 1 2 4 135 z + 2 π 576 z 3 2 + 8 2835 z 2 + ) , | ph z | 2 π δ .