About the Project

房产继承公证书【WeChat微aptao168】83w

AdvancedHelp

(0.002 seconds)

11—20 of 284 matching pages

11: Bibliography D
  • S. R. Deans (1983) The Radon Transform and Some of Its Applications. A Wiley-Interscience Publication, John Wiley & Sons Inc., New York.
  • P. G. L. Dirichlet (1849) Über die Bestimmung der mittleren Werthe in der Zahlentheorie. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften von 1849, pp. 69–83 (German).
  • A. L. Dixon and W. L. Ferrar (1930) Infinite integrals in the theory of Bessel functions. Quart. J. Math., Oxford Ser. 1 (1), pp. 122–145.
  • P. G. Drazin and W. H. Reid (1981) Hydrodynamic Stability. Cambridge University Press, Cambridge.
  • T. M. Dunster (2003a) Uniform asymptotic approximations for the Whittaker functions M κ , i μ ( z ) and W κ , i μ ( z ) . Anal. Appl. (Singap.) 1 (2), pp. 199–212.
  • 12: 4.44 Other Applications
    For applications of generalized exponentials and generalized logarithms to computer arithmetic see §3.1(iv). For an application of the Lambert W -function to generalized Gaussian noise see Chapeau-Blondeau and Monir (2002). For other applications of the Lambert W -function see Corless et al. (1996).
    13: 9.11 Products
    where w 1 and w 2 are any solutions of (9.2.1). For example, w = Ai 2 ( z ) , Ai ( z ) Bi ( z ) , Ai ( z ) Ai ( z e 2 π i / 3 ) , M 2 ( z ) . … Let w 1 , w 2 be any solutions of (9.2.1), not necessarily distinct. …
    9.11.10 z w 1 w 2 d z = 3 10 ( w 1 w 2 + z w 1 w 2 + z w 1 w 2 ) + 1 5 ( z 2 w 1 w 2 z 3 w 1 w 2 ) .
    For z n w 1 w 2 d z , z n w 1 w 2 d z , z n w 1 w 2 d z , where n is any positive integer, see Albright (1977). …
    14: 10.13 Other Differential Equations
    10.13.4 w ′′ + 1 2 ν z w + λ 2 w = 0 , w = z ± ν 𝒞 ν ( λ z ) ,
    10.13.5 z 2 w ′′ + ( 1 2 r ) z w + ( λ 2 q 2 z 2 q + r 2 ν 2 q 2 ) w = 0 , w = z r 𝒞 ν ( λ z q ) ,
    10.13.7 z 2 ( z 2 ν 2 ) w ′′ + z ( z 2 3 ν 2 ) w + ( ( z 2 ν 2 ) 2 ( z 2 + ν 2 ) ) w = 0 , w = 𝒞 ν ( z ) ,
    10.13.9 z 2 w ′′′ + 3 z w ′′ + ( 4 z 2 + 1 4 ν 2 ) w + 4 z w = 0 , w = 𝒞 ν ( z ) 𝒟 ν ( z ) ,
    10.13.10 z 3 w ′′′ + z ( 4 z 2 + 1 4 ν 2 ) w + ( 4 ν 2 1 ) w = 0 , w = z 𝒞 ν ( z ) 𝒟 ν ( z ) ,
    15: 1.13 Differential Equations
    The equation … Two solutions w 1 ( z ) and w 2 ( z ) are called a fundamental pair if any other solution w ( z ) is expressible as … The Wronskian of w 1 ( z ) and w 2 ( z ) is defined by … The following three statements are equivalent: w 1 ( z ) and w 2 ( z ) comprise a fundamental pair in D ; 𝒲 { w 1 ( z ) , w 2 ( z ) } does not vanish in D ; w 1 ( z ) and w 2 ( z ) are linearly independent, that is, the only constants A and B such that … then W = U V is a solution of …
    16: 10.36 Other Differential Equations
    10.36.1 z 2 ( z 2 + ν 2 ) w ′′ + z ( z 2 + 3 ν 2 ) w ( ( z 2 + ν 2 ) 2 + z 2 ν 2 ) w = 0 , w = 𝒵 ν ( z ) ,
    10.36.2 z 2 w ′′ + z ( 1 ± 2 z ) w + ( ± z ν 2 ) w = 0 , w = e z 𝒵 ν ( z ) .
    17: 3.6 Linear Difference Equations
    Given numerical values of w 0 and w 1 , the solution w n of the equation … But suppose that w n is a nontrivial solution such that … Then computation of w n by forward recursion is unstable. … beginning with e 0 = w 0 . …Then w n is generated by backward recursion from …
    18: 28.30 Expansions in Series of Eigenfunctions
    Let λ ^ m , m = 0 , 1 , 2 , , be the set of characteristic values (28.29.16) and (28.29.17), arranged in their natural order (see (28.29.18)), and let w m ( x ) , m = 0 , 1 , 2 , , be the eigenfunctions, that is, an orthonormal set of 2 π -periodic solutions; thus
    28.30.1 w m ′′ + ( λ ^ m + Q ( x ) ) w m = 0 ,
    28.30.3 f ( x ) = m = 0 f m w m ( x ) ,
    28.30.4 f m = 1 2 π 0 2 π f ( x ) w m ( x ) d x .
    19: 32.7 Bäcklund Transformations
    Let w = w ( z ; α ) be a solution of P II . … The solutions w α = w ( z ; α ) , w α ± 1 = w ( z ; α ± 1 ) , satisfy the nonlinear recurrence relation … Next, let W j = W ( z ; α j , β j , 1 , 1 ) , j = 0 , 1 , 2 , 3 , 4 , be solutions of P III  with … Let w = w ( z ; α , β , 1 , 1 ) be a solution of P III  and … Let w = w ( z ; α , β , γ , δ ) be a solution of P VI . …
    20: 3.7 Ordinary Differential Equations
    Consideration will be limited to ordinary linear second-order differential equationsBy repeated differentiation of (3.7.1) all derivatives of w ( z ) can be expressed in terms of w ( z ) and w ( z ) as follows. … Also let 𝐰 denote the ( 2 P + 2 ) × 1 vector … For w = f ( z , w ) the standard fourth-order rule reads … For w ′′ = f ( z , w , w ) the standard fourth-order rule reads …