About the Project

布莱辛-里曼护理学院文凭办理【somewhat微aptao168】2MHDhB

AdvancedHelp

The terms "mhdhb", "aptao168" were not found.Possible alternative terms: "mhd", "caption".

(0.007 seconds)

1—10 of 802 matching pages

1: Software Index
Open Source With Book Commercial
14.34(iv) 𝖯 1 2 + i τ ( x ) , 𝖰 1 2 + i τ ( x ) , 𝖰 ^ 1 2 + i τ μ ( x ) , P 1 2 + i τ ( x ) , Q 1 2 + i τ ( x )
15.20(ii) F 1 2 ( a , b ; c ; x ) , x , a , b , c a a
25.21(v) Li 2 ( z ) , Li s ( z )
30.18(ii) Eigenvalues λ n m ( γ 2 )
  • Open Source Collections and Systems.

    These are collections of software (e.g. libraries) or interactive systems of a somewhat broad scope. Contents may be adapted from research software or may be contributed by project participants who donate their services to the project. The software is made freely available to the public, typically in source code form. While formal support of the collection may not be provided by its developers, within active projects there is often a core group who donate time to consider bug reports and make updates to the collection.

  • 2: 4.17 Special Values and Limits
    Table 4.17.1: Trigonometric functions: values at multiples of 1 12 π .
    θ sin θ cos θ tan θ csc θ sec θ cot θ
    π / 12 1 4 2 ( 3 1 ) 1 4 2 ( 3 + 1 ) 2 3 2 ( 3 + 1 ) 2 ( 3 1 ) 2 + 3
    π / 4 1 2 2 1 2 2 1 2 2 1
    2 π / 3 1 2 3 1 2 3 2 3 3 2 1 3 3
    3 π / 4 1 2 2 1 2 2 1 2 2 1
    4.17.3 lim z 0 1 cos z z 2 = 1 2 .
    3: 34.5 Basic Properties: 6 j Symbol
    If any lower argument in a 6 j symbol is 0 , 1 2 , or 1 , then the 6 j symbol has a simple algebraic form. …
    34.5.5 { j 1 j 2 j 3 1 j 3 1 j 2 } = ( 1 ) J ( 2 ( J + 1 ) ( J 2 j 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) 2 j 2 ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.6 { j 1 j 2 j 3 1 j 3 1 j 2 + 1 } = ( 1 ) J ( ( J 2 j 2 1 ) ( J 2 j 2 ) ( J 2 j 3 + 1 ) ( J 2 j 3 + 2 ) ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) ( 2 j 2 + 3 ) ( 2 j 3 1 ) 2 j 3 ( 2 j 3 + 1 ) ) 1 2 ,
    34.5.7 { j 1 j 2 j 3 1 j 3 j 2 } = ( 1 ) J + 1 2 ( j 2 ( j 2 + 1 ) + j 3 ( j 3 + 1 ) j 1 ( j 1 + 1 ) ) ( 2 j 2 ( 2 j 2 + 1 ) ( 2 j 2 + 2 ) 2 j 3 ( 2 j 3 + 1 ) ( 2 j 3 + 2 ) ) 1 2 .
    34.5.13 E ( j ) = ( ( j 2 ( j 2 j 3 ) 2 ) ( ( j 2 + j 3 + 1 ) 2 j 2 ) ( j 2 ( l 2 l 3 ) 2 ) ( ( l 2 + l 3 + 1 ) 2 j 2 ) ) 1 2 .
    4: 29.1 Special Notation
    The main functions treated in this chapter are the eigenvalues a ν 2 m ( k 2 ) , a ν 2 m + 1 ( k 2 ) , b ν 2 m + 1 ( k 2 ) , b ν 2 m + 2 ( k 2 ) , the Lamé functions 𝐸𝑐 ν 2 m ( z , k 2 ) , 𝐸𝑐 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 1 ( z , k 2 ) , 𝐸𝑠 ν 2 m + 2 ( z , k 2 ) , and the Lamé polynomials 𝑢𝐸 2 n m ( z , k 2 ) , 𝑠𝐸 2 n + 1 m ( z , k 2 ) , 𝑐𝐸 2 n + 1 m ( z , k 2 ) , 𝑑𝐸 2 n + 1 m ( z , k 2 ) , 𝑠𝑐𝐸 2 n + 2 m ( z , k 2 ) , 𝑠𝑑𝐸 2 n + 2 m ( z , k 2 ) , 𝑐𝑑𝐸 2 n + 2 m ( z , k 2 ) , 𝑠𝑐𝑑𝐸 2 n + 3 m ( z , k 2 ) . … Other notations that have been used are as follows: Ince (1940a) interchanges a ν 2 m + 1 ( k 2 ) with b ν 2 m + 1 ( k 2 ) . The relation to the Lamé functions L c ν ( m ) , L s ν ( m ) of Jansen (1977) is given by …
    𝐸𝑠 ν 2 m + 2 ( z , k 2 ) = s ν 2 m + 2 ( k 2 ) Es ν 2 m + 2 ( z , k 2 ) ,
    where the positive factors c ν m ( k 2 ) and s ν m ( k 2 ) are determined by …
    5: 4.30 Elementary Properties
    Table 4.30.1: Hyperbolic functions: interrelations. …
    sinh θ = a cosh θ = a tanh θ = a csch θ = a sech θ = a coth θ = a
    sinh θ a ( a 2 1 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 a 1 ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
    cosh θ ( 1 + a 2 ) 1 / 2 a ( 1 a 2 ) 1 / 2 a 1 ( 1 + a 2 ) 1 / 2 a 1 a ( a 2 1 ) 1 / 2
    tanh θ a ( 1 + a 2 ) 1 / 2 a 1 ( a 2 1 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 ( 1 a 2 ) 1 / 2 a 1
    csch θ a 1 ( a 2 1 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a a ( 1 a 2 ) 1 / 2 ( a 2 1 ) 1 / 2
    sech θ ( 1 + a 2 ) 1 / 2 a 1 ( 1 a 2 ) 1 / 2 a ( 1 + a 2 ) 1 / 2 a a 1 ( a 2 1 ) 1 / 2
    6: 29.15 Fourier Series and Chebyshev Series
    Polynomial 𝑢𝐸 2 n m ( z , k 2 )
    Polynomial 𝑠𝐸 2 n + 1 m ( z , k 2 )
    Polynomial 𝑠𝑐𝐸 2 n + 2 m ( z , k 2 )
    Polynomial 𝑠𝑑𝐸 2 n + 2 m ( z , k 2 )
    Polynomial 𝑐𝑑𝐸 2 n + 2 m ( z , k 2 )
    7: 22.9 Cyclic Identities
    §22.9(ii) Typical Identities of Rank 2
    These identities are cyclic in the sense that each of the indices m , n in the first product of, for example, the form s m , p ( 4 ) s n , p ( 4 ) are simultaneously permuted in the cyclic order: m m + 1 m + 2 p 1 2 m 1 ; n n + 1 n + 2 p 1 2 n 1 . …
    22.9.11 ( d 1 , 2 ( 2 ) ) 2 d 2 , 2 ( 2 ) ± ( d 2 , 2 ( 2 ) ) 2 d 1 , 2 ( 2 ) = k ( d 1 , 2 ( 2 ) ± d 2 , 2 ( 2 ) ) ,
    22.9.12 c 1 , 2 ( 2 ) s 1 , 2 ( 2 ) d 2 , 2 ( 2 ) + c 2 , 2 ( 2 ) s 2 , 2 ( 2 ) d 1 , 2 ( 2 ) = 0 .
    22.9.21 k 2 c 1 , 2 ( 2 ) s 1 , 2 ( 2 ) c 2 , 2 ( 2 ) s 2 , 2 ( 2 ) = k ( 1 ( s 1 , 2 ( 2 ) ) 2 ( s 2 , 2 ( 2 ) ) 2 ) .
    8: 30.3 Eigenvalues
    With μ = m = 0 , 1 , 2 , , the spheroidal wave functions 𝖯𝗌 n m ( x , γ 2 ) are solutions of Equation (30.2.1) which are bounded on ( 1 , 1 ) , or equivalently, which are of the form ( 1 x 2 ) 1 2 m g ( x ) where g ( z ) is an entire function of z . These solutions exist only for eigenvalues λ n m ( γ 2 ) , n = m , m + 1 , m + 2 , , of the parameter λ . … The eigenvalues λ n m ( γ 2 ) are analytic functions of the real variable γ 2 and satisfy … has the solutions λ = λ m + 2 j m ( γ 2 ) , j = 0 , 1 , 2 , . If p is an odd positive integer, then Equation (30.3.5) has the solutions λ = λ m + 2 j + 1 m ( γ 2 ) , j = 0 , 1 , 2 , . …
    9: 29.6 Fourier Series
    §29.6(i) Function 𝐸𝑐 ν 2 m ( z , k 2 )
    In the special case ν = 2 n , m = 0 , 1 , , n , there is a unique nontrivial solution with the property A 2 p = 0 , p = n + 1 , n + 2 , . …
    §29.6(ii) Function 𝐸𝑐 ν 2 m + 1 ( z , k 2 )
    §29.6(iii) Function 𝐸𝑠 ν 2 m + 1 ( z , k 2 )
    §29.6(iv) Function 𝐸𝑠 ν 2 m + 2 ( z , k 2 )
    10: 29.12 Definitions
    The Lamé functions 𝐸𝑐 ν m ( z , k 2 ) , m = 0 , 1 , , ν , and 𝐸𝑠 ν m ( z , k 2 ) , m = 1 , 2 , , ν , are called the Lamé polynomials. …where n = 0 , 1 , 2 , , m = 0 , 1 , 2 , , n . … where ρ , σ , τ are either 0 or 1 2 . The polynomial P ( ξ ) is of degree n and has m zeros (all simple) in ( 0 , 1 ) and n m zeros (all simple) in ( 1 , k 2 ) . … defined for ( t 1 , t 2 , , t n ) with …