About the Project

大都会时时彩网址【杏彩体育qee9.com】9fdS

AdvancedHelp

The terms "时时彩", "qee9.com" were not found.Possible alternative term: "becom".

(0.002 seconds)

1—10 of 165 matching pages

1: 34.6 Definition: 9 j Symbol
§34.6 Definition: 9 j Symbol
The 9 j symbol may be defined either in terms of 3 j symbols or equivalently in terms of 6 j symbols:
34.6.1 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = all  m r s ( j 11 j 12 j 13 m 11 m 12 m 13 ) ( j 21 j 22 j 23 m 21 m 22 m 23 ) ( j 31 j 32 j 33 m 31 m 32 m 33 ) ( j 11 j 21 j 31 m 11 m 21 m 31 ) ( j 12 j 22 j 32 m 12 m 22 m 32 ) ( j 13 j 23 j 33 m 13 m 23 m 33 ) ,
34.6.2 { j 11 j 12 j 13 j 21 j 22 j 23 j 31 j 32 j 33 } = j ( 1 ) 2 j ( 2 j + 1 ) { j 11 j 21 j 31 j 32 j 33 j } { j 12 j 22 j 32 j 21 j j 23 } { j 13 j 23 j 33 j j 11 j 12 } .
The 9 j symbol may also be written as a finite triple sum equivalent to a terminating generalized hypergeometric series of three variables with unit arguments. …
2: 19.15 Advantages of Symmetry
Elliptic integrals are special cases of a particular multivariate hypergeometric function called Lauricella’s F D (Carlson (1961b)). The function R a ( b 1 , b 2 , , b n ; z 1 , z 2 , , z n ) (Carlson (1963)) reveals the full permutation symmetry that is partially hidden in F D , and leads to symmetric standard integrals that simplify many aspects of theory, applications, and numerical computation. …
3: 34.12 Physical Applications
§34.12 Physical Applications
The angular momentum coupling coefficients ( 3 j , 6 j , and 9 j symbols) are essential in the fields of nuclear, atomic, and molecular physics. … 3 j , 6 j , and 9 j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
4: Bibliography F
  • V. Fock (1945) Diffraction of radio waves around the earth’s surface. Acad. Sci. USSR. J. Phys. 9, pp. 255–266.
  • B. R. Frieden (1971) Evaluation, design and extrapolation methods for optical signals, based on use of the prolate functions. In Progress in Optics, E. Wolf (Ed.), Vol. 9, pp. 311–407.
  • L. W. Fullerton and G. A. Rinker (1986) Generalized Fermi-Dirac integrals—FD, FDG, FDH. Comput. Phys. Comm. 39 (2), pp. 181–185.
  • 5: 9 Airy and Related Functions
    Chapter 9 Airy and Related Functions
    6: 34 3j, 6j, 9j Symbols
    Chapter 34 3 j , 6 j , 9 j Symbols
    7: 34.14 Tables
    §34.14 Tables
    Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Some selected 9 j symbols are also given. … 16-17; for 9 j symbols on p. …  310–332, and for the 9 j symbols on pp. …
    8: 19.25 Relations to Other Functions
    For analogous integrals of the second kind, which are not invertible in terms of single-valued functions, see (19.29.20) and (19.29.21) and compare with Gradshteyn and Ryzhik (2000, §3.153,1–10 and §3.156,1–9). … For these results and extensions to the Appell function F 1 16.13) and Lauricella’s function F D see Carlson (1963). ( F 1 and F D are equivalent to the R -function of 3 and n variables, respectively, but lack full symmetry.) …
    9: 16.26 Approximations
    For discussions of the approximation of generalized hypergeometric functions and the Meijer G -function in terms of polynomials, rational functions, and Chebyshev polynomials see Luke (1975, §§5.12 - 5.13) and Luke (1977b, Chapters 1 and 9).
    10: 34.9 Graphical Method
    §34.9 Graphical Method
    For specific examples of the graphical method of representing sums involving the 3 j , 6 j , and 9 j symbols, see Varshalovich et al. (1988, Chapters 11, 12) and Lehman and O’Connell (1973, §3.3).