About the Project

哪里能办理阿联酋身份证KYC认证资料〖办证V信ATV1819〗4Cd

AdvancedHelp

(0.003 seconds)

11—20 of 524 matching pages

11: Bibliography T
  • A. Takemura (1984) Zonal Polynomials. Institute of Mathematical Statistics Lecture Notes—Monograph Series, 4, Institute of Mathematical Statistics, Hayward, CA.
  • N. M. Temme (1979b) The asymptotic expansion of the incomplete gamma functions. SIAM J. Math. Anal. 10 (4), pp. 757–766.
  • W. J. Thompson (1997) Atlas for Computing Mathematical Functions: An Illustrated Guide for Practitioners. John Wiley & Sons Inc., New York.
  • F. G. Tricomi (1949) Sul comportamento asintotico dell’ n -esimo polinomio di Laguerre nell’intorno dell’ascissa 4 n . Comment. Math. Helv. 22, pp. 150–167.
  • A. A. Tuẑilin (1971) Theory of the Fresnel integral. USSR Comput. Math. and Math. Phys. 9 (4), pp. 271–279.
  • 12: 22.17 Moduli Outside the Interval [0,1]
    22.17.7 cn ( z , i k ) = cd ( z / k 1 , k 1 ) ,
    13: Errata
  • Equations (22.9.8), (22.9.9) and (22.9.10)
    22.9.8 s 1 , 3 ( 4 ) s 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) s 3 , 3 ( 4 ) + s 3 , 3 ( 4 ) s 1 , 3 ( 4 ) = κ 2 1 k 2
    22.9.9 c 1 , 3 ( 4 ) c 2 , 3 ( 4 ) + c 2 , 3 ( 4 ) c 3 , 3 ( 4 ) + c 3 , 3 ( 4 ) c 1 , 3 ( 4 ) = κ ( κ + 2 ) ( 1 + κ ) 2
    22.9.10 d 1 , 3 ( 2 ) d 2 , 3 ( 2 ) + d 2 , 3 ( 2 ) d 3 , 3 ( 2 ) + d 3 , 3 ( 2 ) d 1 , 3 ( 2 ) = d 1 , 3 ( 4 ) d 2 , 3 ( 4 ) + d 2 , 3 ( 4 ) d 3 , 3 ( 4 ) + d 3 , 3 ( 4 ) d 1 , 3 ( 4 ) = κ ( κ + 2 )

    Originally all the functions s m , p ( 4 ) , c m , p ( 4 ) , d m , p ( 2 ) and d m , p ( 4 ) in Equations (22.9.8), (22.9.9) and (22.9.10) were written incorrectly with p = 2 . These functions have been corrected so that they are written with p = 3 . In the sentence just below (22.9.10), the expression s m , 2 ( 4 ) s n , 2 ( 4 ) has been corrected to read s m , p ( 4 ) s n , p ( 4 ) .

    Reported by Juan Miguel Nieto on 2019-11-07

  • Table 22.4.3

    Originally a minus sign was missing in the entries for cd u and dc u in the second column (headed z + K + i K ). The correct entries are k 1 ns z and k sn z . Note: These entries appear online but not in the published print edition. More specifically, Table 22.4.3 in the published print edition is restricted to the three Jacobian elliptic functions sn , cn , dn , whereas Table 22.4.3 covers all 12 Jacobian elliptic functions.

    u
    z + K z + K + i K z + i K z + 2 K z + 2 K + 2 i K z + 2 i K
    cd u sn z k 1 ns z k 1 dc z cd z cd z cd z
    dc u ns z k sn z k cd z dc z dc z dc z

    Reported 2014-02-28 by Svante Janson.

  • Equation (13.18.7)
    13.18.7 W 1 4 , ± 1 4 ( z 2 ) = e 1 2 z 2 π z erfc ( z )

    Originally the left-hand side was given correctly as W 1 4 , 1 4 ( z 2 ) ; the equation is true also for W 1 4 , + 1 4 ( z 2 ) .

  • Figure 10.48.5

    Originally the ordinate labels 2 and 4 in this figure were placed too high.

    See accompanying text

    Reported 2010-11-08 by Wolfgang Ehrhardt.

  • Table 22.5.4

    Originally the limiting form for sc ( z , k ) in the last line of this table was incorrect ( cosh z , instead of sinh z ).

    sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
    cn ( z , k ) sech z sd ( z , k ) sinh z nc ( z , k ) cosh z ds ( z , k ) csch z
    dn ( z , k ) sech z nd ( z , k ) cosh z sc ( z , k ) sinh z cs ( z , k ) csch z

    Reported 2010-11-23.

  • 14: 22.5 Special Values
    Table 22.5.1: Jacobian elliptic function values, together with derivatives or residues, for special values of the variable.
    z
    cd z 1 , 0 0 , 1 , k 1 k 1 , 0 1 , 0 1 , 0 1 , 0
    Table 22.5.3: Limiting forms of Jacobian elliptic functions as k 0 .
    sn ( z , k ) sin z cd ( z , k ) cos z dc ( z , k ) sec z ns ( z , k ) csc z
    Table 22.5.4: Limiting forms of Jacobian elliptic functions as k 1 .
    sn ( z , k ) tanh z cd ( z , k ) 1 dc ( z , k ) 1 ns ( z , k ) coth z
    15: Bibliography L
  • H. T. Lau (2004) A Numerical Library in Java for Scientists & Engineers. Chapman & Hall/CRC, Boca Raton, FL.
  • J. Lehner (1941) A partition function connected with the modulus five. Duke Math. J. 8 (4), pp. 631–655.
  • M. Lerch (1903) Zur Theorie der Gaußschen Summen. Math. Ann. 57 (4), pp. 554–567 (German).
  • J. L. López (2001) Uniform asymptotic expansions of symmetric elliptic integrals. Constr. Approx. 17 (4), pp. 535–559.
  • N. A. Lukaševič (1968) Solutions of the fifth Painlevé equation. Differ. Uravn. 4 (8), pp. 1413–1420 (Russian).
  • 16: 22.1 Special Notation
    The functions treated in this chapter are the three principal Jacobian elliptic functions sn ( z , k ) , cn ( z , k ) , dn ( z , k ) ; the nine subsidiary Jacobian elliptic functions cd ( z , k ) , sd ( z , k ) , nd ( z , k ) , dc ( z , k ) , nc ( z , k ) , sc ( z , k ) , ns ( z , k ) , ds ( z , k ) , cs ( z , k ) ; the amplitude function am ( x , k ) ; Jacobi’s epsilon and zeta functions ( x , k ) and Z ( x | k ) . …
    17: Bibliography B
  • A. Basu and T. M. Apostol (2000) A new method for investigating Euler sums. Ramanujan J. 4 (4), pp. 397–419.
  • E. A. Bender (1974) Asymptotic methods in enumeration. SIAM Rev. 16 (4), pp. 485–515.
  • R. Bo and R. Wong (1999) A uniform asymptotic formula for orthogonal polynomials associated with exp ( x 4 ) . J. Approx. Theory 98, pp. 146–166.
  • A. I. Bobenko (1991) Constant mean curvature surfaces and integrable equations. Uspekhi Mat. Nauk 46 (4(280)), pp. 3–42, 192 (Russian).
  • D. Bressoud and S. Wagon (2000) A Course in Computational Number Theory. Key College Publishing, Emeryville, CA.
  • 18: 4 Elementary Functions
    Chapter 4 Elementary Functions
    19: 22.9 Cyclic Identities
    These identities are cyclic in the sense that each of the indices m , n in the first product of, for example, the form s m , p ( 4 ) s n , p ( 4 ) are simultaneously permuted in the cyclic order: m m + 1 m + 2 p 1 2 m 1 ; n n + 1 n + 2 p 1 2 n 1 . …
    22.9.17 d 1 , 4 ( 2 ) d 2 , 4 ( 2 ) d 3 , 4 ( 2 ) ± d 2 , 4 ( 2 ) d 3 , 4 ( 2 ) d 4 , 4 ( 2 ) + d 3 , 4 ( 2 ) d 4 , 4 ( 2 ) d 1 , 4 ( 2 ) ± d 4 , 4 ( 2 ) d 1 , 4 ( 2 ) d 2 , 4 ( 2 ) = k ( ± d 1 , 4 ( 2 ) + d 2 , 4 ( 2 ) ± d 3 , 4 ( 2 ) + d 4 , 4 ( 2 ) ) ,
    22.9.18 ( d 1 , 4 ( 2 ) ) 2 d 3 , 4 ( 2 ) ± ( d 2 , 4 ( 2 ) ) 2 d 4 , 4 ( 2 ) + ( d 3 , 4 ( 2 ) ) 2 d 1 , 4 ( 2 ) ± ( d 4 , 4 ( 2 ) ) 2 d 2 , 4 ( 2 ) = k ( d 1 , 4 ( 2 ) ± d 2 , 4 ( 2 ) + d 3 , 4 ( 2 ) ± d 4 , 4 ( 2 ) ) ,
    §22.9(iv) Typical Identities of Rank 4
    22.9.23 s 1 , 3 ( 4 ) d 1 , 3 ( 4 ) c 2 , 3 ( 4 ) c 3 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) c 3 , 3 ( 4 ) c 1 , 3 ( 4 ) + s 3 , 3 ( 4 ) d 3 , 3 ( 4 ) c 1 , 3 ( 4 ) c 2 , 3 ( 4 ) = κ 2 1 κ 2 ( s 1 , 3 ( 4 ) d 1 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) + s 2 , 3 ( 4 ) d 2 , 3 ( 4 ) ) .
    20: 22.12 Expansions in Other Trigonometric Series and Doubly-Infinite Partial Fractions: Eisenstein Series
    22.12.5 2 K k cd ( 2 K t , k ) = n = π sin ( π ( t + 1 2 ( n + 1 2 ) τ ) ) = n = ( m = ( 1 ) m t + 1 2 m ( n + 1 2 ) τ ) ,