About the Project

加拿大28久久预测零一预测【亚博官方qee9.com】▄3aT

AdvancedHelp

(0.004 seconds)

11—20 of 717 matching pages

11: Bibliography U
  • Unpublished Mathematical Tables (1944) Mathematics of Computation Unpublished Mathematical Tables Collection.
  • F. Ursell (1960) On Kelvin’s ship-wave pattern. J. Fluid Mech. 8 (3), pp. 418–431.
  • K. M. Urwin and F. M. Arscott (1970) Theory of the Whittaker-Hill equation. Proc. Roy. Soc. Edinburgh Sect. A 69, pp. 28–44.
  • 12: 26.4 Lattice Paths: Multinomial Coefficients and Set Partitions
    Table 26.4.1 gives numerical values of multinomials and partitions λ , M 1 , M 2 , M 3 for 1 m n 5 . … M 3 is the number of set partitions of { 1 , 2 , , n } with a 1 subsets of size 1, a 2 subsets of size 2, , and a n subsets of size n :
    26.4.8 M 3 = n ! ( 1 ! ) a 1 ( a 1 ! ) ( 2 ! ) a 2 ( a 2 ! ) ( n ! ) a n ( a n ! ) .
    Table 26.4.1: Multinomials and partitions.
    n m λ M 1 M 2 M 3
    3 2 1 1 , 2 1 3 3 3
    3 3 1 3 6 1 1
    13: 26.2 Basic Definitions
    Thus 231 is the permutation σ ( 1 ) = 2 , σ ( 2 ) = 3 , σ ( 3 ) = 1 . … If, for example, a permutation of the integers 1 through 6 is denoted by 256413 , then the cycles are ( 1 , 2 , 5 ) , ( 3 , 6 ) , and ( 4 ) . …The function σ also interchanges 3 and 6, and sends 4 to itself. … As an example, { 1 , 3 , 4 } , { 2 , 6 } , { 5 } is a partition of { 1 , 2 , 3 , 4 , 5 , 6 } . …
    Table 26.2.1: Partitions p ( n ) .
    n p ( n ) n p ( n ) n p ( n )
    11 56 28 3718 45 89134
    14: 25.14 Lerch’s Transcendent
    With the conditions of (25.14.1) and m = 1 , 2 , 3 , , …
    25.14.6 Φ ( z , s , a ) = 1 2 a s + 0 z x ( a + x ) s d x 2 0 sin ( x ln z s arctan ( x / a ) ) ( a 2 + x 2 ) s / 2 ( e 2 π x 1 ) d x , a > 0 if | z | < 1 ; s > 1 , a > 0 if | z | = 1 .
    15: 27.2 Functions
    Table 27.2.1: Primes.
    n p n p n + 10 p n + 20 p n + 30 p n + 40 p n + 50 p n + 60 p n + 70 p n + 80 p n + 90
    2 3 37 79 131 181 239 293 359 421 479
    3 5 41 83 137 191 241 307 367 431 487
    Table 27.2.2: Functions related to division.
    n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n ) n ϕ ( n ) d ( n ) σ ( n )
    2 1 2 3 15 8 4 24 28 12 6 56 41 40 2 42
    3 2 2 4 16 8 5 31 29 28 2 30 42 12 8 96
    12 4 6 28 25 20 3 31 38 18 4 60 51 32 4 72
    16: Bibliography P
  • PARI-GP (free interactive system and C library)
  • R. B. Paris and A. D. Wood (1995) Stokes phenomenon demystified. Bull. Inst. Math. Appl. 31 (1-2), pp. 21–28.
  • K. Pearson (Ed.) (1968) Tables of the Incomplete Beta-function. 2nd edition, Published for the Biometrika Trustees at the Cambridge University Press, Cambridge.
  • H. N. Phien (1988) A Fortran routine for the computation of gamma percentiles. Adv. Eng. Software 10 (3), pp. 159–164.
  • R. Piessens and M. Branders (1984) Algorithm 28. Algorithm for the computation of Bessel function integrals. J. Comput. Appl. Math. 11 (1), pp. 119–137.
  • 17: 26.6 Other Lattice Path Numbers
    Table 26.6.2: Motzkin numbers M ( n ) .
    n M ( n ) n M ( n ) n M ( n ) n M ( n ) n M ( n )
    3 4 7 127 11 5798 15 3 10572 19 181 99284
    N ( n , k ) is the number of lattice paths from ( 0 , 0 ) to ( n , n ) that stay on or above the line y = x , are composed of directed line segments of the form ( 1 , 0 ) or ( 0 , 1 ) , and for which there are exactly k occurrences at which a segment of the form ( 0 , 1 ) is followed by a segment of the form ( 1 , 0 ) . …
    Table 26.6.3: Narayana numbers N ( n , k ) .
    n k
    3 0 1 3 1
    8 0 1 28 196 490 490 196 28 1
    26.6.7 n = 0 M ( n ) x n = 1 x 1 2 x 3 x 2 2 x 2 ,
    18: 23.9 Laurent and Other Power Series
    c 3 = 1 28 g 3 ,
    23.9.5 c n = 3 ( 2 n + 1 ) ( n 3 ) m = 2 n 2 c m c n m , n 4 .
    Explicit coefficients c n in terms of c 2 and c 3 are given up to c 19 in Abramowitz and Stegun (1964, p. 636). For j = 1 , 2 , 3 , and with e j as in §23.3(i), …
    23.9.8 a m , n = 3 ( m + 1 ) a m + 1 , n 1 + 16 3 ( n + 1 ) a m 2 , n + 1 1 3 ( 2 m + 3 n 1 ) ( 4 m + 6 n 1 ) a m 1 , n .
    19: Bibliography B
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988a) Algorithms for computing Bessel functions of half-integer order with complex arguments. Zh. Vychisl. Mat. i Mat. Fiz. 28 (10), pp. 1449–1460, 1597.
  • L. V. Babushkina, M. K. Kerimov, and A. I. Nikitin (1988b) Algorithms for evaluating spherical Bessel functions in the complex domain. Zh. Vychisl. Mat. i Mat. Fiz. 28 (12), pp. 1779–1788, 1918.
  • W. N. Bailey (1928) Products of generalized hypergeometric series. Proc. London Math. Soc. (2) 28 (2), pp. 242–254.
  • M. V. Berry (1980) Some Geometric Aspects of Wave Motion: Wavefront Dislocations, Diffraction Catastrophes, Diffractals. In Geometry of the Laplace Operator (Proc. Sympos. Pure Math., Univ. Hawaii, Honolulu, Hawaii, 1979), Vol. 36, pp. 13–28.
  • T. Busch, B. Englert, K. Rzażewski, and M. Wilkens (1998) Two cold atoms in a harmonic trap. Found. Phys. 28 (4), pp. 549–559.
  • 20: 24.2 Definitions and Generating Functions
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    28 2 37494 61029 870 2.72982 3107 ×10⁷
    Table 24.2.4: Euler numbers E n .
    n E n
    28 12522 59641 40362 98654 68285
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    3 0 1 2 3 2 1
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    6 0 3 0 5 0 3 1
    8 0 17 0 28 0 14 0 4 1