About the Project

【亚博体育qee9.com】达人捕鱼游戏在线玩7sE

AdvancedHelp

(0.001 seconds)

11—20 of 200 matching pages

11: 28.10 Integral Equations
28.10.5 2 π 0 π / 2 sinh ( 2 h sin z sin t ) se 2 n + 1 ( t , h 2 ) d t = h B 1 2 n + 1 ( h 2 ) se 2 n + 1 ( 0 , h 2 ) se 2 n + 1 ( z , h 2 ) ,
28.10.6 2 π 0 π / 2 sin z sin t cos ( 2 h cos z cos t ) se 2 n + 1 ( t , h 2 ) d t = B 1 2 n + 1 ( h 2 ) 2 se 2 n + 1 ( 1 2 π , h 2 ) se 2 n + 1 ( z , h 2 ) ,
28.10.7 2 π 0 π / 2 sin z sin t sin ( 2 h cos z cos t ) se 2 n + 2 ( t , h 2 ) d t = h B 2 2 n + 2 ( h 2 ) 2 se 2 n + 2 ( 1 2 π , h 2 ) se 2 n + 2 ( z , h 2 ) ,
28.10.8 2 π 0 π / 2 cos z cos t sinh ( 2 h sin z sin t ) se 2 n + 2 ( t , h 2 ) d t = h B 2 2 n + 2 ( h 2 ) 2 se 2 n + 2 ( 0 , h 2 ) se 2 n + 2 ( z , h 2 ) .
12: 28.13 Graphics
§28.13(ii) Solutions ce ν ( x , q ) , se ν ( x , q ) , and me ν ( x , q ) for General ν
See accompanying text
Figure 28.13.4: se ν ( x , 1 ) for 0 < ν < 1 , 0 x 2 π . Magnify 3D Help
13: 28.22 Connection Formulas
28.22.7 g o , 2 m + 1 ( h ) = ( 1 ) m 2 π se 2 m + 1 ( 1 2 π , h 2 ) h B 1 2 m + 1 ( h 2 ) ,
28.22.8 g o , 2 m + 2 ( h ) = ( 1 ) m + 1 2 π se 2 m + 2 ( 1 2 π , h 2 ) h 2 B 2 2 m + 2 ( h 2 ) ,
ge m ( 0 , h 2 ) = 1 2 π S m ( h 2 ) ( g o , m ( h ) ) 2 se m ( 0 , h 2 ) .
14: Bibliography L
  • D. R. Lehman, W. C. Parke, and L. C. Maximon (1981) Numerical evaluation of integrals containing a spherical Bessel function by product integration. J. Math. Phys. 22 (7), pp. 1399–1413.
  • Y. T. Li and R. Wong (2008) Integral and series representations of the Dirac delta function. Commun. Pure Appl. Anal. 7 (2), pp. 229–247.
  • E. Lindelöf (1905) Le Calcul des Résidus et ses Applications à la Théorie des Fonctions. Gauthier-Villars, Paris (French).
  • H. Lotsch and M. Gray (1964) Algorithm 244: Fresnel integrals. Comm. ACM 7 (11), pp. 660–661.
  • N. A. Lukaševič (1971) The second Painlevé equation. Differ. Uravn. 7 (6), pp. 1124–1125 (Russian).
  • 15: 28.12 Definitions and Basic Properties
    me n ( z , q ) = 2 i se n ( z , q ) , n = 1 , 2 , ;
    §28.12(iii) Functions ce ν ( z , q ) , se ν ( z , q ) , when ν
    28.12.13 se ν ( z , q ) = 1 2 i ( me ν ( z , q ) me ν ( z , q ) ) .
    28.12.15 se ν ( z , q ) = se ν ( z , q ) = se ν ( z , q ) .
    Again, the limiting values of ce ν ( z , q ) and se ν ( z , q ) as ν n ( 0 ) are not the functions ce n ( z , q ) and se n ( z , q ) defined in §28.2(vi). …
    16: 28.5 Second Solutions fe n , ge n
    28.5.2 ge n ( z , q ) = S n ( q ) ( z se n ( z , q ) + g n ( z , q ) ) ,
    28.5.9 𝒲 { se n , ge n } = se n ( 0 , q ) ge n ( 0 , q ) .
    For further information on C n ( q ) , S n ( q ) , and expansions of f n ( z , q ) , g n ( z , q ) in Fourier series or in series of ce n , se n functions, see McLachlan (1947, Chapter VII) or Meixner and Schäfke (1954, §2.72). …
    See accompanying text
    Figure 28.5.5: ge 1 ( x , 0.5 ) for 0 x 2 π and (for comparison) se 1 ( x , 0.5 ) . Magnify
    See accompanying text
    Figure 28.5.6: ge 1 ( x , 1 ) for 0 x 2 π and (for comparison) se 1 ( x , 1 ) . Magnify
    17: Bibliography H
  • J. Hadamard (1896) Sur la distribution des zéros de la fonction ζ ( s ) et ses conséquences arithmétiques. Bull. Soc. Math. France 24, pp. 199–220 (French).
  • G. W. Hill (1970) Algorithm 395: Student’s t-distribution. Comm. ACM 13 (10), pp. 617–619.
  • G. W. Hill (1981) Algorithm 571: Statistics for von Mises’ and Fisher’s distributions of directions: I 1 ( x ) / I 0 ( x ) , I 1.5 ( x ) / I 0.5 ( x ) and their inverses [S14]. ACM Trans. Math. Software 7 (2), pp. 233–238.
  • 18: 9.4 Maclaurin Series
    9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
    9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
    19: 28.28 Integrals, Integral Representations, and Integral Equations
    28.28.38 α ^ n , m ( s ) = 1 2 π 0 2 π cos t se n ( t , h 2 ) se m ( t , h 2 ) d t = ( 1 ) p 2 i π se n ( 0 , h 2 ) se m ( 0 , h 2 ) h Ds 2 ( n , m , 0 ) .
    20: 28.2 Definitions and Basic Properties
    se n ( z , 0 ) = sin ( n z ) , n = 1 , 2 , 3 , .
    28.2.37 se 2 n + 2 ( z , q ) = ( 1 ) n se 2 n + 2 ( 1 2 π z , q ) .
    28.2.39 se n ( z , q ) se n ( 0 , q ) = w II ( z ; b n ( q ) , q ) , n = 1 , 2 , .