About the Project

☛ elle uppi0rt Number 205 ⇰ 892 ⇰ 1862 customer service USA✅

AdvancedHelp

(0.010 seconds)

11—20 of 626 matching pages

11: 33.10 Limiting Forms for Large ρ or Large | η |
F ( η , ρ ) = sin ( θ ( η , ρ ) ) + o ( 1 ) ,
where θ ( η , ρ ) is defined by (33.2.9). … In particular, for = 0 , …
G ( η , ρ ) = π ( 2 η ) ( 2 + 1 ) ! C ( η ) ( ( 2 η ρ ) 1 / 2 Y 2 + 1 ( ( 8 η ρ ) 1 / 2 ) + o ( | η | 1 / 4 ) ) .
In particular, for = 0 , …
12: 24.16 Generalizations
For = 0 , 1 , 2 , , Bernoulli and Euler polynomials of order are defined respectively by …When x = 0 they reduce to the Bernoulli and Euler numbers of order : …Also for = 1 , 2 , 3 , , … For extensions of B n ( ) ( x ) to complex values of x , n , and , and also for uniform asymptotic expansions for large x and large n , see Temme (1995b) and López and Temme (1999b, 2010b). … (This notation is consistent with (24.16.3) when x = .) …
13: 24.10 Arithmetic Properties
where n 2 , and ( 1 ) is an arbitrary integer such that ( p 1 ) p | 2 n . … valid when m n ( mod ( p 1 ) p ) and n 0 ( mod p 1 ) , where ( 0 ) is a fixed integer. …valid for fixed integers ( 0 ) , and for all n ( 0 ) and w ( 0 ) such that 2 | w . … valid for fixed integers ( 1 ) , and for all n ( 1 ) such that 2 n 0 ( mod p 1 ) and p | 2 n . …valid for fixed integers ( 1 ) and for all n ( 1 ) such that ( p 1 ) p 1 | 2 n .
14: 33.17 Recurrence Relations and Derivatives
33.17.1 ( + 1 ) r f ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) f ( ϵ , ; r ) + ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) = 0 ,
33.17.2 ( + 1 ) ( 1 + 2 ϵ ) r h ( ϵ , 1 ; r ) ( 2 + 1 ) ( ( + 1 ) r ) h ( ϵ , ; r ) + r h ( ϵ , + 1 ; r ) = 0 ,
33.17.3 ( + 1 ) r f ( ϵ , ; r ) = ( ( + 1 ) 2 r ) f ( ϵ , ; r ) ( 1 + ( + 1 ) 2 ϵ ) r f ( ϵ , + 1 ; r ) ,
33.17.4 ( + 1 ) r h ( ϵ , ; r ) = ( ( + 1 ) 2 r ) h ( ϵ , ; r ) r h ( ϵ , + 1 ; r ) .
15: 10.42 Zeros
For example, if ν is real, then the zeros of I ν ( z ) are all complex unless 2 < ν < ( 2 1 ) for some positive integer , in which event I ν ( z ) has two real zeros. The distribution of the zeros of K n ( n z ) in the sector 3 2 π ph z 1 2 π in the cases n = 1 , 5 , 10 is obtained on rotating Figures 10.21.2, 10.21.4, 10.21.6, respectively, through an angle 1 2 π so that in each case the cut lies along the positive imaginary axis. The zeros in the sector 1 2 π ph z 3 2 π are their conjugates. K n ( z ) has no zeros in the sector | ph z | 1 2 π ; this result remains true when n is replaced by any real number ν . For the number of zeros of K ν ( z ) in the sector | ph z | π , when ν is real, see Watson (1944, pp. 511–513). …
16: 28.23 Expansions in Series of Bessel Functions
28.23.7 Mc 2 m ( j ) ( z , h ) = ( 1 ) m ( ce 2 m ( 1 2 π , h 2 ) ) 1 = 0 A 2 2 m ( h 2 ) 𝒞 2 ( j ) ( 2 h sinh z ) ,
28.23.9 Mc 2 m + 1 ( j ) ( z , h ) = ( 1 ) m + 1 ( ce 2 m + 1 ( 1 2 π , h 2 ) ) 1 coth z = 0 ( 2 + 1 ) A 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h sinh z ) ,
28.23.11 Ms 2 m + 1 ( j ) ( z , h ) = ( 1 ) m ( se 2 m + 1 ( 1 2 π , h 2 ) ) 1 = 0 B 2 + 1 2 m + 1 ( h 2 ) 𝒞 2 + 1 ( j ) ( 2 h sinh z ) ,
28.23.13 Ms 2 m + 2 ( j ) ( z , h ) = ( 1 ) m + 1 ( se 2 m + 2 ( 1 2 π , h 2 ) ) 1 coth z = 0 ( 2 + 2 ) B 2 + 2 2 m + 2 ( h 2 ) 𝒞 2 + 2 ( j ) ( 2 h sinh z ) .
When j = 2 , 3 , 4 the series in the even-numbered equations converge for z > 0 and | cosh z | > 1 , and the series in the odd-numbered equations converge for z > 0 and | sinh z | > 1 . …
17: 33.4 Recurrence Relations and Derivatives
For = 1 , 2 , 3 , , let …Then, with X denoting any of F ( η , ρ ) , G ( η , ρ ) , or H ± ( η , ρ ) ,
33.4.2 R X 1 T X + R + 1 X + 1 = 0 , 1 ,
33.4.3 X = R X 1 S X , 1 ,
33.4.4 X = S + 1 X R + 1 X + 1 , 0 .
18: 32.14 Combinatorics
Let S N be the group of permutations 𝝅 of the numbers 1 , 2 , , N 26.2). With 1 m 1 < < m n N , 𝝅 ( m 1 ) , 𝝅 ( m 2 ) , , 𝝅 ( m n ) is said to be an increasing subsequence of 𝝅 of length n when 𝝅 ( m 1 ) < 𝝅 ( m 2 ) < < 𝝅 ( m n ) . Let N ( 𝝅 ) be the length of the longest increasing subsequence of 𝝅 . …
32.14.1 lim N Prob ( N ( 𝝅 ) 2 N N 1 / 6 s ) = F ( s ) ,
19: 18.18 Sums
18.18.9 P n ( cos θ 1 cos θ 2 + sin θ 1 sin θ 2 cos ϕ ) = P n ( cos θ 1 ) P n ( cos θ 2 ) + 2 = 1 n ( n ) ! ( n + ) ! 2 2 ( n ! ) 2 ( sin θ 1 ) P n ( , ) ( cos θ 1 ) ( sin θ 2 ) P n ( , ) ( cos θ 2 ) cos ( ϕ ) .
18.18.19 x n = ( α + 1 ) n = 0 n ( n ) ( α + 1 ) L ( α ) ( x ) .
18.18.22 C m ( λ ) ( x ) C n ( λ ) ( x ) = = 0 min ( m , n ) ( m + n + λ 2 ) ( m + n 2 ) ! ( m + n + λ ) ! ( m ) ! ( n ) ! ( λ ) ( λ ) m ( λ ) n ( 2 λ ) m + n ( λ ) m + n ( 2 λ ) m + n 2 C m + n 2 ( λ ) ( x ) .
18.18.23 H m ( x ) H n ( x ) = = 0 min ( m , n ) ( m ) ( n ) 2 ! H m + n 2 ( x ) .
18.18.24 b n , = ( n ) ( n + α + β + 1 ) ( β n ) n 2 ( α + 1 ) n ,
20: 20.10 Integrals
20.10.1 0 x s 1 θ 2 ( 0 | i x 2 ) d x = 2 s ( 1 2 s ) π s / 2 Γ ( 1 2 s ) ζ ( s ) , s > 1 ,
Let s , , and β be constants such that s > 0 , > 0 , and | β | + | β | . Then
20.10.4 0 e s t θ 1 ( β π 2 | i π t 2 ) d t = 0 e s t θ 2 ( ( 1 + β ) π 2 | i π t 2 ) d t = s sinh ( β s ) sech ( s ) ,
20.10.5 0 e s t θ 3 ( ( 1 + β ) π 2 | i π t 2 ) d t = 0 e s t θ 4 ( β π 2 | i π t 2 ) d t = s cosh ( β s ) csch ( s ) .