About the Project

%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%degre%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%BD%EF%BF%lambda%EF%BF%BD%EF%BF%BD%EF%BF%besselk

AdvancedHelp

(0.035 seconds)

1—10 of 165 matching pages

1: Bibliography D
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • T. M. Dunster (1992) Uniform asymptotic expansions for oblate spheroidal functions I: Positive separation parameter λ . Proc. Roy. Soc. Edinburgh Sect. A 121 (3-4), pp. 303–320.
  • T. M. Dunster (1995) Uniform asymptotic expansions for oblate spheroidal functions II: Negative separation parameter λ . Proc. Roy. Soc. Edinburgh Sect. A 125 (4), pp. 719–737.
  • 2: Bibliography H
  • M. H. Hull and G. Breit (1959) Coulomb Wave Functions. In Handbuch der Physik, Bd. 41/1, S. Flügge (Ed.), pp. 408–465.
  • 3: Bibliography G
  • B. Gambier (1910) Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est a points critiques fixes. Acta Math. 33 (1), pp. 1–55.
  • 4: 31.8 Solutions via Quadratures
    Denote 𝐦 = ( m 0 , m 1 , m 2 , m 3 ) and λ = 4 q . Then …Here Ψ g , N ( λ , z ) is a polynomial of degree g in λ and of degree N = m 0 + m 1 + m 2 + m 3 in z , that is a solution of the third-order differential equation satisfied by a product of any two solutions of Heun’s equation. …The variables λ and ν are two coordinates of the associated hyperelliptic (spectral) curve Γ : ν 2 = j = 1 2 g + 1 ( λ λ j ) . …Lastly, λ j , j = 1 , 2 , , 2 g + 1 , are the zeros of the Wronskian of w + ( 𝐦 ; λ ; z ) and w ( 𝐦 ; λ ; z ) . …
    5: 28.29 Definitions and Basic Properties
    A generalization of Mathieu’s equation (28.2.1) is Hill’s equationThe basic solutions w I ( z , λ ) , w II ( z , λ ) are defined in the same way as in §28.2(ii) (compare (28.2.5), (28.2.6)). … This is the characteristic equation of (28.29.1), and cos ( π ν ) is an entire function of λ . Given λ together with the condition (28.29.6), the solutions ± ν of (28.29.9) are the characteristic exponents of (28.29.1). … In the symmetric case Q ( z ) = Q ( z ) , w I ( z , λ ) is an even solution and w II ( z , λ ) is an odd solution; compare §28.2(ii). …
    6: 32.4 Isomonodromy Problems
    𝚿 λ = 𝐀 ( z , λ ) 𝚿 ,
    𝚿 z = 𝐁 ( z , λ ) 𝚿 ,
    is a linear system in which 𝐀 and 𝐁 are matrices and λ is independent of z . …
    32.4.2 2 𝚿 z λ = 2 𝚿 λ z ,
    32.4.3 𝐀 z 𝐁 λ + 𝐀 𝐁 𝐁 𝐀 = 0 .
    7: 8.20 Asymptotic Expansions of E p ( z )
    For x 0 and p > 1 let x = λ p and define A 0 ( λ ) = 1 ,
    8.20.4 A k + 1 ( λ ) = ( 1 2 k λ ) A k ( λ ) + λ ( λ + 1 ) d A k ( λ ) d λ , k = 0 , 1 , 2 , ,
    so that A k ( λ ) is a polynomial in λ of degree k 1 when k 1 . …
    A 1 ( λ ) = 1 ,
    uniformly for λ [ 0 , ) . …
    8: 18.35 Pollaczek Polynomials
    Thus type 3 with c = 0 reduces to type 2, and type 3 with c = 0 and λ = 1 2 reduces to type 1, also in subsequent formulas. … The Pollaczek polynomials of type 3 are defined by the recurrence relation (in first form (18.2.8)) … For type 1 take λ = 1 2 and for Gauss’ hypergeometric function F see (15.2.1). … Hence, only in the case a = b = 0 does ln ( w ( λ ) ( x ; a , b ) ) satisfy the condition (18.2.39) for the Szegő class 𝒢 . … More generally, the P n ( λ ) ( x ; a , b ) are OP’s if and only if one of the following three conditions holds (in case (iii) work with the monic polynomials (18.35.2_2)). …
    9: 19.26 Addition Theorems
    In this subsection, and also §§19.26(ii) and 19.26(iii), we assume that λ , x , y , z are positive, except that at most one of x , y , z can be 0.
    19.26.1 R F ( x + λ , y + λ , z + λ ) + R F ( x + μ , y + μ , z + μ ) = R F ( x , y , z ) ,
    where λ > 0 , y > 0 , x 0 , and … If x = 0 , then λ μ = y z . … The equations inverse to z + λ = ( z + x ) ( z + y ) and the two other equations obtained by permuting x , y , z (see (19.26.19)) are …
    10: 31.11 Expansions in Series of Hypergeometric Functions
    31.11.2 P j = P { 0 1 0 0 λ + j z 1 γ 1 δ μ j } ,
    31.11.3 λ + μ = γ + δ 1 = α + β ϵ .
    31.11.3_1 P j 5 = ( λ ) j ( 1 γ + λ ) j ( 1 + λ μ ) 2 j z λ j F 1 2 ( λ + j , 1 γ + λ + j 1 + λ μ + 2 j ; 1 z ) ,
    λ , μ must also satisfy the condition … Here …