About the Project

%E7%9C%9F%E4%BA%BA%E7%9C%9F%E9%92%B1%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%A4%A7%E5%8E%85,%E7%BD%91%E4%B8%8A%E7%8E%B0%E9%87%91%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%B9%B3%E5%8F%B0,%E3%80%90%E7%9C%9F%E4%BA%BA%E6%A3%8B%E7%89%8C%E5%AE%98%E6%96%B9%E7%BD%91%E7%AB%99%E2%88%B6789yule.com%E3%80%91%E7%BD%91%E4%B8%8A%E7%9C%9F%E9%92%B1%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%A4%A7%E5%8E%85,%E5%9C%A8%E7%BA%BF%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E7%BD%91%E7%AB%99,%E6%89%8B%E6%9C%BA%E6%A3%8B%E7%89%8Capp%E4%B8%8B%E8%BD%BD,%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8Fapp,%E6%A3%8B%E7%89%8C%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E3%80%90%E6%A3%8B%E7%89%8C%E6%B8%B8%E6%88%8F%E5%85%AC%E5%8F%B8%E2%88%B6789yule.com%E3%80%91%E7%BD%91%E5%9D%80ZEAE0CA0kAkn0BEB

AdvancedHelp

(0.090 seconds)

11—20 of 612 matching pages

11: 9.4 Maclaurin Series
β–Ί
9.4.1 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
β–Ί
9.4.2 Ai ⁑ ( z ) = Ai ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Ai ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) ,
β–Ί
9.4.3 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 1 3 ! ⁒ z 3 + 1 4 6 ! ⁒ z 6 + 1 4 7 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( z + 2 4 ! ⁒ z 4 + 2 5 7 ! ⁒ z 7 + 2 5 8 10 ! ⁒ z 10 + β‹― ) ,
β–Ί
9.4.4 Bi ⁑ ( z ) = Bi ⁑ ( 0 ) ⁒ ( 1 + 2 3 ! ⁒ z 3 + 2 5 6 ! ⁒ z 6 + 2 5 8 9 ! ⁒ z 9 + β‹― ) + Bi ⁑ ( 0 ) ⁒ ( 1 2 ! ⁒ z 2 + 1 4 5 ! ⁒ z 5 + 1 4 7 8 ! ⁒ z 8 + β‹― ) .
12: 18.8 Differential Equations
β–Ί
Table 18.8.1: Classical OP’s: differential equations A ⁑ ( x ) ⁒ f ′′ ⁑ ( x ) + B ⁑ ( x ) ⁒ f ⁑ ( x ) + C ⁑ ( x ) ⁒ f ⁑ ( x ) + Ξ» n ⁒ f ⁑ ( x ) = 0 .
β–Ί β–Ίβ–Ίβ–Ίβ–Ίβ–Ί
# f ⁑ ( x ) A ⁑ ( x ) B ⁑ ( x ) C ⁑ ( x ) λ n
4 C n ( λ ) ⁑ ( x ) 1 x 2 ( 2 ⁒ λ + 1 ) ⁒ x 0 n ⁒ ( n + 2 ⁒ λ )
8 L n ( α ) ⁑ ( x ) x α + 1 x 0 n
9 e 1 2 ⁒ x 2 ⁒ x α + 1 2 ⁒ L n ( α ) ⁑ ( x 2 ) 1 0 x 2 + ( 1 4 α 2 ) ⁒ x 2 4 ⁒ n + 2 ⁒ α + 2
β–Ί
13: Bibliography T
β–Ί
  • J. G. Taylor (1982) Improved error bounds for the Liouville-Green (or WKB) approximation. J. Math. Anal. Appl. 85 (1), pp. 79–89.
  • β–Ί
  • N. M. Temme (1993) Asymptotic estimates of Stirling numbers. Stud. Appl. Math. 89 (3), pp. 233–243.
  • β–Ί
  • N. M. Temme (1995b) Bernoulli polynomials old and new: Generalizations and asymptotics. CWI Quarterly 8 (1), pp. 47–66.
  • β–Ί
  • P. Terwilliger (2013) The universal Askey-Wilson algebra and DAHA of type ( C 1 , C 1 ) . SIGMA 9, pp. Paper 047, 40 pp..
  • β–Ί
  • A. A. TuαΊ‘ilin (1971) Theory of the Fresnel integral. USSR Comput. Math. and Math. Phys. 9 (4), pp. 271–279.
  • 14: 34.12 Physical Applications
    §34.12 Physical Applications
    β–ΊThe angular momentum coupling coefficients ( 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols) are essential in the fields of nuclear, atomic, and molecular physics. … 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j symbols are also found in multipole expansions of solutions of the Laplace and Helmholtz equations; see Carlson and Rushbrooke (1950) and Judd (1976).
    15: 24.2 Definitions and Generating Functions
    β–Ί
    B 2 ⁒ n + 1 = 0 ,
    β–Ί
    24.2.4 B n = B n ⁑ ( 0 ) ,
    β–Ί
    Table 24.2.4: Euler numbers E n .
    β–Ί β–Ίβ–Ίβ–Ί
    n E n
    8 1385
    β–Ί
    β–Ί
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ⁑ ( x ) = k = 0 n b n , k ⁒ x k .
    β–Ί β–Ίβ–Ίβ–Ί
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    β–Ί
    β–Ί
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ⁑ ( x ) = k = 0 n e n , k ⁒ x k .
    β–Ί β–Ίβ–Ίβ–Ί
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    β–Ί
    16: 2.10 Sums and Sequences
    β–ΊFor further information on C see §5.17. … β–ΊFor extensions to Ξ± 0 , higher terms, and other examples, see Olver (1997b, Chapter 8). … β–Ίwhere π’ž 1 , π’ž 2 denote respectively the upper and lower halves of π’ž . … β–ΊFor generalizations and other examples see Olver (1997b, Chapter 8), Ford (1960), and Berndt and Evans (1984). … β–ΊFor examples see Olver (1997b, Chapters 8, 9). …
    17: Bibliography
    β–Ί
  • M. Abramowitz and P. Rabinowitz (1954) Evaluation of Coulomb wave functions along the transition line. Physical Rev. (2) 96, pp. 77–79.
  • β–Ί
  • D. E. Amos (1983c) Uniform asymptotic expansions for exponential integrals E n ⁒ ( x ) and Bickley functions Ki n ⁒ ( x ) . ACM Trans. Math. Software 9 (4), pp. 467–479.
  • β–Ί
  • T. M. Apostol (1952) Theorems on generalized Dedekind sums. Pacific J. Math. 2 (1), pp. 1–9.
  • β–Ί
  • H. Appel (1968) Numerical Tables for Angular Correlation Computations in Ξ± -, Ξ² - and Ξ³ -Spectroscopy: 3 ⁒ j -, 6 ⁒ j -, 9 ⁒ j -Symbols, F- and Ξ“ -Coefficients. Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Springer-Verlag.
  • β–Ί
  • F. M. Arscott (1959) A new treatment of the ellipsoidal wave equation. Proc. London Math. Soc. (3) 9, pp. 21–50.
  • 18: 14.33 Tables
    β–Ί
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 5–8D; 𝖯 n ⁑ ( x ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 5–7D; 𝖰 n ⁑ ( x ) and 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 0 ⁒ ( .01 ) ⁒ 1 , 6–8D; P n ⁑ ( x ) and P n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 5 , 9 , 10 , x = 1 ⁒ ( .2 ) ⁒ 10 , 6S; Q n ⁑ ( x ) and Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 9 , 10 , x = 1 ⁒ ( .2 ) ⁒ 10 , 6S. (Here primes denote derivatives with respect to x .)

  • β–Ί
  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 0 ⁒ ( .1 ) ⁒ 1 , 7D; 𝖯 n ⁑ ( cos ⁑ ΞΈ ) for n = 1 ⁒ ( 1 ) ⁒ 4 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖰 n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 0 ⁒ ( .1 ) ⁒ 0.9 , 8S; 𝖰 n ⁑ ( cos ⁑ ΞΈ ) for n = 0 ⁒ ( 1 ) ⁒ 3 , 10 , ΞΈ = 0 ⁒ ( 5 ∘ ) ⁒ 90 ∘ , 8D; 𝖯 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n m = 0 ⁒ ( 1 ) ⁒ 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ⁑ ( x ) for m = 1 ⁒ ( 1 ) ⁒ 4 , n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , 8S; 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) for m = 0 ⁒ ( 1 ) ⁒ 3 , Ξ½ = 0 ⁒ ( .25 ) ⁒ 5 , ΞΈ = 0 ⁒ ( 15 ∘ ) ⁒ 90 ∘ , 5D; P n ⁑ ( x ) for n = 2 ⁒ ( 1 ) ⁒ 5 , 10 , x = 1 ⁒ ( 1 ) ⁒ 10 , 7S; Q n ⁑ ( x ) for n = 0 ⁒ ( 1 ) ⁒ 2 , 10 , x = 2 ⁒ ( 1 ) ⁒ 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 Ξ½ -zeros of 𝖯 Ξ½ m ⁑ ( cos ⁑ ΞΈ ) and of its derivative for m = 0 ⁒ ( 1 ) ⁒ 4 , ΞΈ = 10 ∘ , 30 ∘ , 150 ∘ .

  • β–Ί
  • Belousov (1962) tabulates 𝖯 n m ⁑ ( cos ⁑ ΞΈ ) (normalized) for m = 0 ⁒ ( 1 ) ⁒ 36 , n m = 0 ⁒ ( 1 ) ⁒ 56 , ΞΈ = 0 ⁒ ( 2.5 ∘ ) ⁒ 90 ∘ , 6D.

  • 19: 26.7 Set Partitions: Bell Numbers
    β–Ί B ⁑ ( n ) is the number of partitions of { 1 , 2 , , n } . … β–Ί
    26.7.1 B ⁑ ( 0 ) = 1 ,
    β–Ί
    26.7.2 B ⁑ ( n ) = k = 0 n S ⁑ ( n , k ) ,
    β–Ί
    26.7.6 B ⁑ ( n + 1 ) = k = 0 n ( n k ) ⁒ B ⁑ ( k ) .
    β–ΊFor higher approximations to B ⁑ ( n ) as n see de Bruijn (1961, pp. 104–108).
    20: 16.24 Physical Applications
    β–Ί
    §16.24(iii) 3 ⁒ j , 6 ⁒ j , and 9 ⁒ j Symbols
    β–ΊThey can be expressed as F 2 3 functions with unit argument. …These are balanced F 3 4 functions with unit argument. Lastly, special cases of the 9 ⁒ j symbols are F 4 5 functions with unit argument. …