About the Project

%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E5%A4%A7%E5%85%A8,%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%92%E5%90%8D,%E7%BD%91%E4%B8%8A%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E3%80%90%E5%8D%9A%E5%BD%A9%E7%BD%91%E5%9D%80%E2%88%B6789yule.com%E3%80%91%E5%85%A8%E7%90%83%E6%9C%80%E5%A4%A7%E7%9A%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0,%E6%AD%A3%E8%A7%84%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%A8%E8%8D%90,%E4%BD%93%E8%82%B2%E5%8D%9A%E5%BD%A9%E5%85%AC%E5%8F%B8,%E4%BD%93%E8%82%B2%E5%8D%9A%E5%BD%A9%E5%B9%B3%E5%8F%B0%E6%8E%92%E5%90%8D%E3%80%90%E7%9C%9F%E4%BA%BA%E5%8D%9A%E5%BD%A9%E5%A4%A7%E5%8E%85%E2%88%B6789yule.com%E3%80%91

AdvancedHelp

(0.070 seconds)

11—20 of 661 matching pages

11: 28.25 Asymptotic Expansions for Large z
28.25.1 M ν ( 3 , 4 ) ( z , h ) e ± i ( 2 h cosh z ( 1 2 ν + 1 4 ) π ) ( π h ( cosh z + 1 ) ) 1 2 m = 0 D m ± ( 4 i h ( cosh z + 1 ) ) m ,
D 1 ± = 0 ,
D 0 ± = 1 ,
28.25.3 ( m + 1 ) D m + 1 ± + ( ( m + 1 2 ) 2 ± ( m + 1 4 ) 8 i h + 2 h 2 a ) D m ± ± ( m 1 2 ) ( 8 i h m ) D m 1 ± = 0 , m 0 .
12: Bibliography D
  • S. D. Daymond (1955) The principal frequencies of vibrating systems with elliptic boundaries. Quart. J. Mech. Appl. Math. 8 (3), pp. 361–372.
  • G. Doetsch (1955) Handbuch der Laplace-Transformation. Bd. II. Anwendungen der Laplace-Transformation. 1. Abteilung. Birkhäuser Verlag, Basel und Stuttgart (German).
  • K. Driver and K. Jordaan (2013) Inequalities for extreme zeros of some classical orthogonal and q -orthogonal polynomials. Math. Model. Nat. Phenom. 8 (1), pp. 48–59.
  • B. A. Dubrovin (1981) Theta functions and non-linear equations. Uspekhi Mat. Nauk 36 (2(218)), pp. 11–80 (Russian).
  • G. V. Dunne and K. Rao (2000) Lamé instantons. J. High Energy Phys. 2000 (1), pp. Paper 19, 8.
  • 13: 28.8 Asymptotic Expansions for Large q
    28.8.1 a m ( h 2 ) b m + 1 ( h 2 ) } 2 h 2 + 2 s h 1 8 ( s 2 + 1 ) 1 2 7 h ( s 3 + 3 s ) 1 2 12 h 2 ( 5 s 4 + 34 s 2 + 9 ) 1 2 17 h 3 ( 33 s 5 + 410 s 3 + 405 s ) 1 2 20 h 4 ( 63 s 6 + 1260 s 4 + 2943 s 2 + 486 ) 1 2 25 h 5 ( 527 s 7 + 15617 s 5 + 69001 s 3 + 41607 s ) + .
    Also let ξ = 2 h cos x and D m ( ξ ) = e ξ 2 / 4 𝐻𝑒 m ( ξ ) 18.3). …
    28.8.4 U m ( ξ ) D m ( ξ ) 1 2 6 h ( D m + 4 ( ξ ) 4 ! ( m 4 ) D m 4 ( ξ ) ) + 1 2 13 h 2 ( D m + 8 ( ξ ) 2 5 ( m + 2 ) D m + 4 ( ξ ) + 4 !  2 5 ( m 1 ) ( m 4 ) D m 4 ( ξ ) + 8 ! ( m 8 ) D m 8 ( ξ ) ) + ,
    28.8.5 V m ( ξ ) 1 2 4 h ( D m + 2 ( ξ ) m ( m 1 ) D m 2 ( ξ ) ) + 1 2 10 h 2 ( D m + 6 ( ξ ) + ( m 2 25 m 36 ) D m + 2 ( ξ ) m ( m 1 ) ( m 2 + 27 m 10 ) D m 2 ( ξ ) 6 ! ( m 6 ) D m 6 ( ξ ) ) + ,
    28.8.7 S ^ m ( π h 2 ( m ! ) 2 ) 1 / 4 ( 1 2 m + 1 8 h + m 4 + 2 m 3 121 m 2 122 m 84 2048 h 2 + ) 1 / 2 .
    14: 30.3 Eigenvalues
    30.3.11 8 = 2 ( 4 m 2 1 ) 2 A + 1 16 B + 1 8 C + 1 2 D ,
    A = ( n m 1 ) ( n m ) ( n + m 1 ) ( n + m ) ( 2 n 5 ) 2 ( 2 n 3 ) ( 2 n 1 ) 7 ( 2 n + 1 ) ( 2 n + 3 ) 2 ( n m + 1 ) ( n m + 2 ) ( n + m + 1 ) ( n + m + 2 ) ( 2 n 1 ) 2 ( 2 n + 1 ) ( 2 n + 3 ) 7 ( 2 n + 5 ) ( 2 n + 7 ) 2 ,
    B = ( n m 3 ) ( n m 2 ) ( n m 1 ) ( n m ) ( n + m 3 ) ( n + m 2 ) ( n + m 1 ) ( n + m ) ( 2 n 7 ) ( 2 n 5 ) 2 ( 2 n 3 ) 3 ( 2 n 1 ) 4 ( 2 n + 1 ) ( n m + 1 ) ( n m + 2 ) ( n m + 3 ) ( n m + 4 ) ( n + m + 1 ) ( n + m + 2 ) ( n + m + 3 ) ( n + m + 4 ) ( 2 n + 1 ) ( 2 n + 3 ) 4 ( 2 n + 5 ) 3 ( 2 n + 7 ) 2 ( 2 n + 9 ) ,
    C = ( n m + 1 ) 2 ( n m + 2 ) 2 ( n + m + 1 ) 2 ( n + m + 2 ) 2 ( 2 n + 1 ) 2 ( 2 n + 3 ) 7 ( 2 n + 5 ) 2 ( n m 1 ) 2 ( n m ) 2 ( n + m 1 ) 2 ( n + m ) 2 ( 2 n 3 ) 2 ( 2 n 1 ) 7 ( 2 n + 1 ) 2 ,
    D = ( n m 1 ) ( n m ) ( n m + 1 ) ( n m + 2 ) ( n + m 1 ) ( n + m ) ( n + m + 1 ) ( n + m + 2 ) ( 2 n 3 ) ( 2 n 1 ) 4 ( 2 n + 1 ) 2 ( 2 n + 3 ) 4 ( 2 n + 5 ) .
    15: 12.10 Uniform Asymptotic Expansions for Large Parameter
    and the coefficients 𝒜 ~ s ( t ) and ~ s ( t ) are given by … and the coefficients 𝖠 s ( τ ) are the product of τ s and a polynomial in τ of degree 2 s . …starting with 𝖠 0 ( τ ) = 1 . … The coefficients A s ( ζ ) and B s ( ζ ) are given by …The coefficients C s ( ζ ) and D s ( ζ ) in (12.10.36) and (12.10.38) are given by …
    16: 9.4 Maclaurin Series
    9.4.1 Ai ( z ) = Ai ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Ai ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.2 Ai ( z ) = Ai ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Ai ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) ,
    9.4.3 Bi ( z ) = Bi ( 0 ) ( 1 + 1 3 ! z 3 + 1 4 6 ! z 6 + 1 4 7 9 ! z 9 + ) + Bi ( 0 ) ( z + 2 4 ! z 4 + 2 5 7 ! z 7 + 2 5 8 10 ! z 10 + ) ,
    9.4.4 Bi ( z ) = Bi ( 0 ) ( 1 + 2 3 ! z 3 + 2 5 6 ! z 6 + 2 5 8 9 ! z 9 + ) + Bi ( 0 ) ( 1 2 ! z 2 + 1 4 5 ! z 5 + 1 4 7 8 ! z 8 + ) .
    17: 24.2 Definitions and Generating Functions
    Table 24.2.3: Bernoulli numbers B n = N / D .
    n N D B n
    8 1 30 3.33333 3333 ×10⁻²
    Table 24.2.4: Euler numbers E n .
    n E n
    8 1385
    Table 24.2.5: Coefficients b n , k of the Bernoulli polynomials B n ( x ) = k = 0 n b n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    Table 24.2.6: Coefficients e n , k of the Euler polynomials E n ( x ) = k = 0 n e n , k x k .
    k
    n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
    18: 34.14 Tables
    §34.14 Tables
    Tables of exact values of the squares of the 3 j and 6 j symbols in which all parameters are 8 are given in Rotenberg et al. (1959), together with a bibliography of earlier tables of 3 j , 6 j , and 9 j symbols on pp. … Some selected 9 j symbols are also given. … 16-17; for 9 j symbols on p. …  310–332, and for the 9 j symbols on pp. …
    19: 1.18 Linear Second Order Differential Operators and Eigenfunction Expansions
    Assume that 𝒟 ( T ) is dense in V , i. … u λ 𝒟 ( T ) , corresponding to distinct eigenvalues, are orthogonal: i. … This insures the vanishing of the boundary terms in (1.18.26), and also is a choice which indicates that 𝒟 ( T ) = 𝒟 ( T ) , as f ( x ) and g ( x ) satisfy the same boundary conditions and thus define the same domains. … More generally, continuous spectra may occur in sets of disjoint finite intervals [ λ a , λ b ] ( 0 , ) , often called bands, when q ( x ) is periodic, see Ashcroft and Mermin (1976, Ch 8) and Kittel (1996, Ch 7). … , 𝒟 ( T ) 𝒟 ( T ) and T v = T v for v 𝒟 ( T ) . …
    20: 19.37 Tables
    Tabulated for ϕ = 0 ( 5 ) 90 , k 2 = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 1 ) 90 , k 2 = 0 ( .01 ) 1 to 7S by Beli͡akov et al. (1962). … Tabulated for ϕ = 0 ( 5 ) 90 , k = 0 ( .01 ) 1 to 10D by Fettis and Caslin (1964). Tabulated for ϕ = 0 ( 5 ) 90 , arcsin k = 0 ( 1 ) 90 to 6D by Byrd and Friedman (1971), for ϕ = 0 ( 5 ) 90 , arcsin k = 0 ( 2 ) 90 and 5 ( 10 ) 85 to 8D by Abramowitz and Stegun (1964, Chapter 17), and for ϕ = 0 ( 10 ) 90 , arcsin k = 0 ( 5 ) 90 to 9D by Zhang and Jin (1996, pp. 674–675). … Tabulated for ϕ = 5 ( 5 ) 80 ( 2.5 ) 90 , α 2 = 1 ( .1 ) 0.1 , 0.1 ( .1 ) 1 , k 2 = 0 ( .05 ) 0.9 ( .02 ) 1 to 10D by Fettis and Caslin (1964) (and warns of inaccuracies in Selfridge and Maxfield (1958) and Paxton and Rollin (1959)). …