About the Project

%E3%80%90%E4%BA%9A%E5%8D%9A%E4%BD%93%E8%82%B2qee9.com%E3%80%91%E6%9C%89%E9%87%91%E8%A7%92%E5%A4%A7%E7%8E%8B%E7%9A%84%E6%8D%95%E9%B1%BC%E6%B8%B8%E6%88%8F31jX

AdvancedHelp

(0.027 seconds)

11—20 of 544 matching pages

11: 20.15 Tables
This reference gives θ j ( x , q ) , j = 1 , 2 , 3 , 4 , and their logarithmic x -derivatives to 4D for x / π = 0 ( .1 ) 1 , α = 0 ( 9 ) 90 , where α is the modular angle given by … Spenceley and Spenceley (1947) tabulates θ 1 ( x , q ) / θ 2 ( 0 , q ) , θ 2 ( x , q ) / θ 2 ( 0 , q ) , θ 3 ( x , q ) / θ 4 ( 0 , q ) , θ 4 ( x , q ) / θ 4 ( 0 , q ) to 12D for u = 0 ( 1 ) 90 , α = 0 ( 1 ) 89 , where u = 2 x / ( π θ 3 2 ( 0 , q ) ) and α is defined by (20.15.1), together with the corresponding values of θ 2 ( 0 , q ) and θ 4 ( 0 , q ) . Lawden (1989, pp. 270–279) tabulates θ j ( x , q ) , j = 1 , 2 , 3 , 4 , to 5D for x = 0 ( 1 ) 90 , q = 0.1 ( .1 ) 0.9 , and also q to 5D for k 2 = 0 ( .01 ) 1 . Tables of Neville’s theta functions θ s ( x , q ) , θ c ( x , q ) , θ d ( x , q ) , θ n ( x , q ) (see §20.1) and their logarithmic x -derivatives are given in Abramowitz and Stegun (1964, pp. 582–585) to 9D for ε , α = 0 ( 5 ) 90 , where (in radian measure) ε = x / θ 3 2 ( 0 , q ) = π x / ( 2 K ( k ) ) , and α is defined by (20.15.1). …
12: 14.33 Tables
  • Abramowitz and Stegun (1964, Chapter 8) tabulates 𝖯 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 5–8D; 𝖯 n ( x ) for n = 1 ( 1 ) 4 , 9 , 10 , x = 0 ( .01 ) 1 , 5–7D; 𝖰 n ( x ) and 𝖰 n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 0 ( .01 ) 1 , 6–8D; P n ( x ) and P n ( x ) for n = 0 ( 1 ) 5 , 9 , 10 , x = 1 ( .2 ) 10 , 6S; Q n ( x ) and Q n ( x ) for n = 0 ( 1 ) 3 , 9 , 10 , x = 1 ( .2 ) 10 , 6S. (Here primes denote derivatives with respect to x .)

  • Zhang and Jin (1996, Chapter 4) tabulates 𝖯 n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 0 ( .1 ) 1 , 7D; 𝖯 n ( cos θ ) for n = 1 ( 1 ) 4 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖰 n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 0 ( .1 ) 0.9 , 8S; 𝖰 n ( cos θ ) for n = 0 ( 1 ) 3 , 10 , θ = 0 ( 5 ) 90 , 8D; 𝖯 n m ( x ) for m = 1 ( 1 ) 4 , n m = 0 ( 1 ) 2 , n = 10 , x = 0 , 0.5 , 8S; 𝖰 n m ( x ) for m = 1 ( 1 ) 4 , n = 0 ( 1 ) 2 , 10 , 8S; 𝖯 ν m ( cos θ ) for m = 0 ( 1 ) 3 , ν = 0 ( .25 ) 5 , θ = 0 ( 15 ) 90 , 5D; P n ( x ) for n = 2 ( 1 ) 5 , 10 , x = 1 ( 1 ) 10 , 7S; Q n ( x ) for n = 0 ( 1 ) 2 , 10 , x = 2 ( 1 ) 10 , 8S. Corresponding values of the derivative of each function are also included, as are 6D values of the first 5 ν -zeros of 𝖯 ν m ( cos θ ) and of its derivative for m = 0 ( 1 ) 4 , θ = 10 , 30 , 150 .

  • Belousov (1962) tabulates 𝖯 n m ( cos θ ) (normalized) for m = 0 ( 1 ) 36 , n m = 0 ( 1 ) 56 , θ = 0 ( 2.5 ) 90 , 6D.

  • 13: Bibliography K
  • K. W. J. Kadell (1994) A proof of the q -Macdonald-Morris conjecture for B C n . Mem. Amer. Math. Soc. 108 (516), pp. vi+80.
  • M. Kaneko (1997) Poly-Bernoulli numbers. J. Théor. Nombres Bordeaux 9 (1), pp. 221–228.
  • R. B. Kearfott (1996) Algorithm 763: INTERVAL_ARITHMETIC: A Fortran 90 module for an interval data type. ACM Trans. Math. Software 22 (4), pp. 385–392.
  • T. H. Koornwinder and F. Bouzeffour (2011) Nonsymmetric Askey-Wilson polynomials as vector-valued polynomials. Appl. Anal. 90 (3-4), pp. 731–746.
  • E. Kreyszig (1957) On the zeros of the Fresnel integrals. Canad. J. Math. 9, pp. 118–131.
  • 14: 32.8 Rational Solutions
    32.8.3 w ( z ; 3 ) = 3 z 2 z 3 + 4 6 z 2 ( z 3 + 10 ) z 6 + 20 z 3 80 ,
    32.8.4 w ( z ; 4 ) = 1 z + 6 z 2 ( z 3 + 10 ) z 6 + 20 z 3 80 9 z 5 ( z 3 + 40 ) z 9 + 60 z 6 + 11200 .
    Q 3 ( z ) = z 6 + 20 z 3 80 ,
    Q 5 ( z ) = z 15 + 140 z 12 + 2800 z 9 + 78400 z 6 3 13600 z 3 62 72000 ,
  • (e)

    α = 1 8 ( 2 m + 1 ) 2 , β = 1 8 ( 2 n + 1 ) 2 , and γ .

  • 15: 5.16 Sums
    5.16.1 k = 1 ( 1 ) k ψ ( k ) = π 2 8 ,
    For related sums involving finite field analogs of the gamma and beta functions (Gauss and Jacobi sums) see Andrews et al. (1999, Chapter 1) and Terras (1999, pp. 90, 149).
    16: 26.13 Permutations: Cycle Notation
    26.13.2 [ 1 2 3 4 5 6 7 8 3 5 2 4 7 8 1 6 ]
    is ( 1 , 3 , 2 , 5 , 7 ) ( 4 ) ( 6 , 8 ) in cycle notation. …In consequence, (26.13.2) can also be written as ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) . … For the example (26.13.2), this decomposition is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 1 , 3 ) ( 2 , 3 ) ( 2 , 5 ) ( 5 , 7 ) ( 6 , 8 ) . Again, for the example (26.13.2) a minimal decomposition into adjacent transpositions is given by ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) = ( 2 , 3 ) ( 1 , 2 ) ( 4 , 5 ) ( 3 , 4 ) ( 2 , 3 ) ( 3 , 4 ) ( 4 , 5 ) ( 6 , 7 ) ( 5 , 6 ) ( 7 , 8 ) ( 6 , 7 ) : inv ( ( 1 , 3 , 2 , 5 , 7 ) ( 6 , 8 ) ) = 11 .
    17: 1.11 Zeros of Polynomials
    Set z = w 1 3 a to reduce f ( z ) = z 3 + a z 2 + b z + c to g ( w ) = w 3 + p w + q , with p = ( 3 b a 2 ) / 3 , q = ( 2 a 3 9 a b + 27 c ) / 27 . … f ( z ) = z 3 6 z 2 + 6 z 2 , g ( w ) = w 3 6 w 6 , A = 3 4 3 , B = 3 2 3 . … Resolvent cubic is z 3 + 12 z 2 + 20 z + 9 = 0 with roots θ 1 = 1 , θ 2 = 1 2 ( 11 + 85 ) , θ 3 = 1 2 ( 11 85 ) , and θ 1 = 1 , θ 2 = 1 2 ( 17 + 5 ) , θ 3 = 1 2 ( 17 5 ) . … Let … Then f ( z ) , with a n 0 , is stable iff a 0 0 ; D 2 k > 0 , k = 1 , , 1 2 n ; sign D 2 k + 1 = sign a 0 , k = 0 , 1 , , 1 2 n 1 2 .
    18: 12.12 Integrals
    12.12.2 0 e 3 4 t 2 t a 3 2 U ( a , t ) d t = 2 1 4 + 1 2 a Γ ( a 1 2 ) cos ( ( 1 4 a + 1 8 ) π ) , a < 1 2 ,
    For compendia of integrals see Erdélyi et al. (1953b, v. 2, pp. 121–122), Erdélyi et al. (1954a, b, v. 1, pp. 60–61, 115, 210–211, and 336; v. 2, pp. 76–80, 115, 151, 171, and 395–398), Gradshteyn and Ryzhik (2000, §7.7), Magnus et al. (1966, pp. 330–331), Marichev (1983, pp. 190–191), Oberhettinger (1974, pp. 144–145), Oberhettinger (1990, pp. 106–108 and 192), Oberhettinger and Badii (1973, pp. 181–185), Prudnikov et al. (1986b, pp. 36–37, 155–168, 243–246, 289–290, 327–328, 419–420, and 619), Prudnikov et al. (1992a, §3.11), and Prudnikov et al. (1992b, §3.11). …
    19: 10.34 Analytic Continuation
    20: Bibliography J
  • L. Jacobsen, W. B. Jones, and H. Waadeland (1986) Further results on the computation of incomplete gamma functions. In Analytic Theory of Continued Fractions, II (Pitlochry/Aviemore, 1985), W. J. Thron (Ed.), Lecture Notes in Math. 1199, pp. 67–89.
  • M. Jimbo, T. Miwa, Y. Môri, and M. Sato (1980) Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent. Phys. D 1 (1), pp. 80–158.
  • B. R. Judd (1976) Modifications of Coulombic interactions by polarizable atoms. Math. Proc. Cambridge Philos. Soc. 80 (3), pp. 535–539.
  • G. Julia (1918) Memoire sur l’itération des fonctions rationnelles. J. Math. Pures Appl. 8 (1), pp. 47–245 (French).